53 research outputs found

    Mucin 1 (MUC1) is a novel partner for MAL2 in breast carcinoma cells

    Get PDF
    Background: The MAL2 gene, encoding a four-transmembrane protein of the MAL family, is amplified and overexpressed in breast and other cancers, yet the significance of this is unknown. MAL-like proteins have trafficking functions, but their molecular roles are largely obscure, partly due to a lack of known binding partners

    The formin INF2 regulates basolateral-to-apical transcytosis and lumen formation in association with Cdc42 and MAL2

    Get PDF
    Transcytosis is a widespread pathway for apical targeting in epithelial cells. MAL2, an essential protein of the machinery for apical transcytosis, functions by shuttling in vesicular carriers between the apical zone and the cell periphery. We have identified INF2, an atypical formin with actin polymerization and depolymerization activities, which is a binding partner of MAL2. MAL2-positive vesicular carriers associate with short actin filaments during transcytosis in a process requiring INF2. INF2 binds Cdc42 in a GTP-loaded-dependent manner. Cdc42 and INF2 regulate MAL2 dynamics and are necessary for apical transcytosis and the formation of lateral lumens in hepatoma HepG2 cells. INF2 and MAL2 are also essential for the formation of the central lumen in organotypic cultures of epithelial MDCK cells. Our results reveal a functional mechanism whereby Cdc42, INF2, and MAL2 are sequentially ordered in a pathway dedicated to the regulation of transcytosis and lumen formation. © 2010 Elsevier Inc.This work was supported by grants (BFU2006-01925, BFU2009-07886, and CONSOLIDER COAT CSD2009-00016) to M.A.A. from the Ministerio de Ciencia e Innovación (MICINN), Spain. R.M. is the holder of a contract from the Ramón y Cajal Program of the MICINN. The authors declare no competing financial interests

    MAL2 and tumor protein D52 (TPD52) are frequently overexpressed in ovarian carcinoma, but differentially associated with histological subtype and patient outcome

    Get PDF
    Background: The four-transmembrane MAL2 protein is frequently overexpressed in breast carcinoma, and MAL2 overexpression is associated with gain of the corresponding locus at chromosome 8q24.12. Independent expression microarray studies predict MAL2 overexpression in ovarian carcinoma, but these had remained unconfirmed. MAL2 binds tumor protein D52 (TPD52), which is frequently overexpressed in ovarian carcinoma, but the clinical significance of MAL2 and TPD52 overexpression was unknown. Methods: Immunohistochemical analyses of MAL2 and TPD52 expression were performed using tissue microarray sections including benign, borderline and malignant epithelial ovarian tumours. Inmmunohistochemical staining intensity and distribution was assessed both visually and digitally. Results: MAL2 and TPD52 were significantly overexpressed in high-grade serous carcinomas compared with serous borderline tumours. MAL2 expression was highest in serous carcinomas relative to other histological subtypes, whereas TPD52 expression was highest in clear cell carcinomas. MAL2 expression was not related to patient survival, however high-level TPD52 staining was significantly associated with improved overall survival in patients with stage III serous ovarian carcinoma (log-rank test, p < 0.001; n = 124) and was an independent predictor of survival in the overall carcinoma cohort (hazard ratio (HR), 0.498; 95% confidence interval (CI), 0.34-0.728; p < 0.001; n = 221), and in serous carcinomas (HR, 0.440; 95% CI, 0.294-0.658; p < 0.001; n = 182). Conclusions: MAL2 is frequently overexpressed in ovarian carcinoma, and TPD52 overexpression is a favourable independent prognostic marker of potential value in the management of ovarian carcinoma patients.11 page(s

    Using single lectins to enrich glycoproteins in conditioned media

    No full text
    Lectins are sugar-binding proteins that can recognize and bind to carbohydrates conjugated to proteins and lipids. Coupled with mass spectrometry technologies, lectin affinity chromatography is becoming a popular approach for identification and quantification of glycoproteins in complex samples such as blood, tumor tissues, and cell lines. Given the commercial availability of a large number of lectins that recognize diverse sugar structures, it is now possible to isolate and study glycoproteins for biological and medical research. This unit provides a general guide to single-lectin-based enrichment of glycoproteins from serum-free conditioned media. Due to the unique carbohydrate specificity of most lectins and the complexity of the samples, optimization steps may be required to evaluate different elution buffers and methods as well as binding conditions, for each lectin, for optimal recovery of bound glycoproteins.10 page(s

    Mass Spectrometry-Based N-Glycomics of Colorectal Cancer

    No full text
    Colorectal cancer (CRC) is one of the most prevalent cancers worldwide. An increased molecular understanding of the CRC pathology is warranted to gain insights into the underlying molecular and cellular mechanisms of the disease. Altered protein glycosylation patterns are associated with most diseases including malignant transformation. Recent advances in mass spectrometry and bioinformatics have accelerated glycomics research and present a new paradigm for cancer biomarker discovery. Mass spectrometry (MS)-based glycoproteomics and glycomics, therefore, hold considerable promise to improve the discovery of novel biomarkers with utility in disease diagnosis and therapy. This review focuses on the emerging field of glycomics to present a comprehensive review of advances in technologies and their application in studies aimed at discovering novel glycan-based biomarkers. We will also discuss some of the challenges associated with using glycans as biomarkers

    Using lectins to harvest the plasma/serum glycoproteome

    No full text
    Aberrant protein glycosylation has been shown to be associated with disease processes and identification of disease-specific glycoproteins and glycosylation changes may serve as potential diagnostic and therapeutic biomarkers. However despite recent advances in proteomic-based biomarker discovery, this knowledge has not yet translated into an extensive mining of the glycoproteome for potential biomarkers. The major challenge for a comprehensive glycoproteomics analysis arises primarily from the enormous complexity and the large dynamic range in protein constituent in biological samples. Methods that specifically target glycoproteins are therefore necessary to facilitate their selective enrichment prior to their identification by MS-based analysis. The use of lectins, with selective affinities for specific carbohydrate epitopes, to enrich glycoprotein fractions coupled with modern MS, have greatly enhanced the identification of the glycoproteome. On account of their ability to specifically bind cell surface carbohydrates lectins have, during the recent past, found extensive applications in elucidation of the architecture and dynamics of cell surface carbohydrates, glycoconjugate purification, and structural characterization. Combined with complementary depletion and MS technologies, lectin affinity chromatography is becoming the most widely employed method of choice for biomarker discovery in cancer and other diseases.9 page(s

    Signaling through the Smad Pathway by insulin-like growth factor-binding protein-3 in breast cancer cells : relationship to transforming growth factor-β1 signaling

    No full text
    We previously demonstrated in T47D cells transfected to express the transforming growth factor-β receptor type II (TGF-βRII) that insulin-like growth factor binding protein-3 (IGFBP-3) could stimulate Smad2 and Smad3 phosphorylation, potentiate TGF-β1-stimulated Smad phosphorylation, and cooperate with exogenous TGF-β1 in cell growth inhibition (Fanayan, S., Firth, S. M., Butt, A. J., and Baxter, R. C. (2000) J. Biol. Chem. 275, 39146–39151). This study further explores IGFBP-3 signaling through the Smad pathway. Like TGF-β1, natural and recombinant IGFBP-3 stimulated the time- and dose-dependent phosphorylation of TGF-βRI as well as Smad2 and Smad3. This effect required the presence of TGF-βRII. IGFBP-3 mutated in carboxyl-terminal nuclear localization signal residues retained activity in TGF-βR1 and Smad phosphorylation, whereas IGFBP-5 was inactive. Immunoneutralization of endogenous TGF-β1 suggested that TGF-β1 was not essential for IGFBP-3 stimulation of this pathway, but it increased the effect of IGFBP-3. IGFBP-3, like TGF-β1, elicited a rapid decline in immunodetectable Smad4 and Smad4·Smad2 complexes. IGFBP-3 and nuclear localization signal mutant IGFBP-3 stimulated the activation of the plasminogen activator inhibitor-1 promoter but was not additive with TGF-β, suggesting that this end point is not a direct marker of the IGFBP-3 effect on cell proliferation. This study defines a signaling pathway for IGFBP-3 from a cell surface receptor to nuclear transcriptional activity, requiring TGF-βRII but not dependent on the nuclear translocation of IGFBP-3. The precise mechanism by which IGFBP-3 interacts with the TGF-β receptor system remains to be established.7 page(s
    • …
    corecore