71 research outputs found

    MAL2 and tumor protein D52 (TPD52) are frequently overexpressed in ovarian carcinoma, but differentially associated with histological subtype and patient outcome

    Get PDF
    Background: The four-transmembrane MAL2 protein is frequently overexpressed in breast carcinoma, and MAL2 overexpression is associated with gain of the corresponding locus at chromosome 8q24.12. Independent expression microarray studies predict MAL2 overexpression in ovarian carcinoma, but these had remained unconfirmed. MAL2 binds tumor protein D52 (TPD52), which is frequently overexpressed in ovarian carcinoma, but the clinical significance of MAL2 and TPD52 overexpression was unknown. Methods: Immunohistochemical analyses of MAL2 and TPD52 expression were performed using tissue microarray sections including benign, borderline and malignant epithelial ovarian tumours. Inmmunohistochemical staining intensity and distribution was assessed both visually and digitally. Results: MAL2 and TPD52 were significantly overexpressed in high-grade serous carcinomas compared with serous borderline tumours. MAL2 expression was highest in serous carcinomas relative to other histological subtypes, whereas TPD52 expression was highest in clear cell carcinomas. MAL2 expression was not related to patient survival, however high-level TPD52 staining was significantly associated with improved overall survival in patients with stage III serous ovarian carcinoma (log-rank test, p < 0.001; n = 124) and was an independent predictor of survival in the overall carcinoma cohort (hazard ratio (HR), 0.498; 95% confidence interval (CI), 0.34-0.728; p < 0.001; n = 221), and in serous carcinomas (HR, 0.440; 95% CI, 0.294-0.658; p < 0.001; n = 182). Conclusions: MAL2 is frequently overexpressed in ovarian carcinoma, and TPD52 overexpression is a favourable independent prognostic marker of potential value in the management of ovarian carcinoma patients.11 page(s

    Differential interactions between IGFBP-3 and transforming growth factor-beta (TGF-β) in normal vs cancerous breast epithelial cells

    Get PDF
    In addition to modulating insulin-like growth factors action, it is now clear that insulin-like growth factor-binding protein-3 also has intrinsic effects on cell growth and survival. We have compared the effects of insulin-like growth factor-binding protein-3 and transforming growth factor-beta on cell proliferation and death of Hs578T cells and the normal breast epithelial cell line, MCF-10A. The growth of MCF-10A cells was inhibited at low concentrations of insulin-like growth factor-binding protein-3 but stimulated at high concentrations. These differential effects were unaffected in the presence of an insulin-like growth factor-I receptor antagonist. A synthetic peptide corresponding to the serine phosphorylation domain of insulin-like growth factor-binding protein-3 (that does not bind to insulin-like growth factors) also mimicked these differential actions. The growth of both cell lines was significantly inhibited by transforming growth factor-beta, this was associated with a 14-fold increase of insulin-like growth factor-binding protein-3 secreted by the Hs578T cells but a five-fold decrease of insulin-like growth factor-binding protein-3 secreted by MCF-10A cells. Replacement doses of exogenous insulin-like growth factor-binding protein-3 overcame the transforming growth factor-beta-induced growth inhibition in the MCF-10A cells. Cell death induced by ceramide was significantly reduced by insulin-like growth factor-binding protein-3 in the MCF-10A cells and depleting insulin-like growth factor-binding protein-3 with transforming growth factor-beta in these cells consequently increased their susceptibility to ceramide. In contrast, insulin-like growth factor-binding protein-3 enhanced apoptosis induced by ceramide in the Hs578T cells but transforming growth factor-beta treated Hs578T cells were resistant to apoptosis. The addition of anti-sense mRNA to insulin-like growth factor-binding protein-3 significantly abrogated this effect of transforming growth factor-beta. These data indicate that insulin-like growth factor-binding protein-3 has intrinsic activity capable of inhibiting or enhancing the growth and survival of breast epithelial cells depending on the cell line and exposure to other cytokines

    Molecular Signatures of Prostate Stem Cells Reveal Novel Signaling Pathways and Provide Insights into Prostate Cancer

    Get PDF
    BACKGROUND:The global gene expression profiles of adult and fetal murine prostate stem cells were determined to define common and unique regulators whose misexpression might play a role in the development of prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS:A distinctive core of transcriptional regulators common to both fetal and adult primitive prostate cells was identified as well as molecules that are exclusive to each population. Elements common to fetal and adult prostate stem cells include expression profiles of Wnt, Shh and other pathways identified in stem cells of other organs, signatures of the aryl-hydrocarbon receptor, and up-regulation of components of the aldehyde dehydrogenase/retinoic acid receptor axis. There is also a significant lipid metabolism signature, marked by overexpression of lipid metabolizing enzymes and the presence of the binding motif for Srebp1. The fetal stem cell population, characterized by more rapid proliferation and self-renewal, expresses regulators of the cell cycle, such as E2f, Nfy, Tead2 and Ap2, at elevated levels, while adult stem cells show a signature in which TGF-beta has a prominent role. Finally, comparison of the signatures of primitive prostate cells with previously described profiles of human prostate tumors identified stem cell molecules and pathways with deregulated expression in prostate tumors including chromatin modifiers and the oncogene, Erg. CONCLUSIONS/SIGNIFICANCE:Our data indicate that adult prostate stem or progenitor cells may acquire characteristics of self-renewing primitive fetal prostate cells during oncogenesis and suggest that aberrant activation of components of prostate stem cell pathways may contribute to the development of prostate tumors

    Using lectins to harvest the plasma/serum glycoproteome

    No full text
    Aberrant protein glycosylation has been shown to be associated with disease processes and identification of disease-specific glycoproteins and glycosylation changes may serve as potential diagnostic and therapeutic biomarkers. However despite recent advances in proteomic-based biomarker discovery, this knowledge has not yet translated into an extensive mining of the glycoproteome for potential biomarkers. The major challenge for a comprehensive glycoproteomics analysis arises primarily from the enormous complexity and the large dynamic range in protein constituent in biological samples. Methods that specifically target glycoproteins are therefore necessary to facilitate their selective enrichment prior to their identification by MS-based analysis. The use of lectins, with selective affinities for specific carbohydrate epitopes, to enrich glycoprotein fractions coupled with modern MS, have greatly enhanced the identification of the glycoproteome. On account of their ability to specifically bind cell surface carbohydrates lectins have, during the recent past, found extensive applications in elucidation of the architecture and dynamics of cell surface carbohydrates, glycoconjugate purification, and structural characterization. Combined with complementary depletion and MS technologies, lectin affinity chromatography is becoming the most widely employed method of choice for biomarker discovery in cancer and other diseases.9 page(s

    An Optimized approach for enrichment of glycoproteins from cell culture lysates using native multi-lectin affinity chromatography

    No full text
    Lectins are capable of recognizing specific glycan structures and serve as invaluable tools for the separation of glycosylated proteins from nonglycosylated proteins in biological samples. We report on the optimization of native multi-lectin affinity chromatography, combining three lectins, namely, concanavalin A, jacalin, and wheat germ agglutinin for fractionation of cellular glycoproteins from MCF-7 breast cancer lysate. We evaluated several conditions for optimum recovery of total proteins and glycoproteins such as low pH and saccharide elution buffers, and the inclusion of detergents in binding and elution buffers. Optimum recovery was observed with overnight incubation of cell lysate with lectins at 4°C, and inclusion of detergent in binding and saccharide elution buffers. Total protein and bound recoveries were 80 and 9%, respectively. Importantly, we found that high saccharide strength elution buffers were not necessary to release bound glycoproteins. This study demonstrates that multi-lectin affinity chromatography can be extended to total cell lysate to investigate the cellular glycoproteome.8 page(s

    Comprehensive N-glycome profiling of cultured human epithelial breast cells identifies unique secretome n-glycosylation signatures enabling tumorigenic subtype classification

    No full text
    The secreted cellular sub-proteome (secretome) is a rich source of biologically active glycoproteins. N-Glycan profiling of secretomes of cultured cancer cells provides an opportunity to investigate the link between protein N-glycosylation and tumorigenesis. Utilizing carbon-LC-ESI-CID-MS/MS of protein released native N-glycans, we accurately profiled the secretome N-glycosylation of six human epithelial breast cells including normal mammary epithelial cells (HMEC) and breast cancer cells belonging to luminal A subtype (MCF7), HER2-overexpressing subtype (SKBR3), and basal B subtype (MDA-MB157, MDA-MB231, HS578T). On the basis of intact molecular mass, LC retention time, and MS/MS fragmentation, a total of 74 N-glycans were confidently identified and quantified. The secretomes comprised significant levels of highly sialylated and fucosylated complex type N-glycans, which were elevated in all cancer cells relative to HMEC (57.7-87.2% vs 24.9%, p < 0.0001 and 57.1-78.0% vs 38.4%, p < 0.0001-0.001, respectively). Similarly, other glycan features were found to be altered in breast cancer secretomes including paucimannose and complex type N-glycans containing bisecting β1,4-GlcNAc and LacdiNAc determinants. Subtype-specific glycosylation were observed, including the preferential expression of α2,3-sialylation in the basal B breast cancer cells. Pathway analysis indicated that the regulated N-glycans were biosynthetically related. Tight clustering of the breast cancer subtypes based on N-glycome signatures supported the involvement of N-glycosylation in cancer. In conclusion, we are the first to report on the secretome N-glycosylation of a panel of breast epithelial cell lines representing different subtypes. Complementing proteome and lipid profiling, N-glycome mapping yields important pieces of structural information to help understand the biomolecular deregulation in breast cancer development and progression, knowledge that may facilitate the discovery of candidate cancer markers and potential drug targets.13 page(s

    Proteogenomic analysis of human colon carcinoma cell lines LIM1215, LIM1899, and LIM2405

    No full text
    As part of the genome-wide and chromosome-centric human proteomic project (C-HPP), we have integrated shotgun proteomics approach and a genome-wide transcriptomic approach (RNA-Seq) of a set of human colon cancer cell lines (LIM1215, LIM1899 and LIM2405) that were selected to represent a wide range of pathological states of colorectal cancer. The combination of a standard proteomics approach (1D-gel electrophoresis coupled to LC/ion trap mass spectrometry) and RNA-Seq allowed us to exploit the greater depth of the transcriptomics measurement (∼9800 transcripts per cell line) versus the protein observations (∼1900 protein identifications per cell line). Conversely, the proteomics data were helpful in identifying both cancer associated proteins with differential expression patterns as well as protein networks and pathways which appear to be deregulated in these cell lines. Examples of potential markers include mortalin, nucleophosmin, ezrin, LASP1, alpha and beta forms of spectrin, exportin, the carcinoembryonic antigen family, EGFR and MET. Interaction analyses identified the large intermediate filament family, the protein folding network and adapter proteins in focal adhesion networks, which included the CDC42 and RHOA signaling pathways that may have potential for identifying phenotypic states representing poorly and moderately differentiated states of CRC, with or without metastases.11 page(s

    Comparative N-glycan profiling of colorectal cancer cell lines reveals unique bisecting GlcNAc and α-2,3-linked sialic acid determinants are associated with membrane proteins of the more metastatic/aggressive cell lines

    No full text
    Advances in colorectal cancer (CRC) diagnosis will be enhanced by development of more sensitive and reliable methods for early detection of the disease when treatment is more effective. Because many known disease biomarkers are membrane-bound glycoproteins with important biological functions, we chose to compare N-glycan profiles of membrane proteins from three phenotypically different CRC cell lines, LIM1215, LIM1899, and LIM2405, representing moderately differentiated metastatic, moderately differentiated primary, and poorly differentiated (aggressive) primary CRC cell lines, respectively. The N-glycan structures and their relative abundances were determined as their underivatized reduced forms, using porous graphitized carbon LC-ESI-MS/MS. A key observation was the similar N-glycan landscape in these cells with the dominance of high mannose type glycan structures (70-90%) in all three cell lines, suggesting an incomplete glycan processing. Importantly, unique glycan determinants such as bisecting N-acetylglucosamine were observed at a high level in the metastatic LIM1215 cells, with some expressed in the moderately differentiated LIM1899, while none were detected in the poorly differentiated LIM2405 cells. Conversely, α-2,3-sialylation was completely absent in LIM1215 and LIM1899 and present only in LIM2405. RNA-Seq and lectin immunofluorescence data correlated well with these data, showing the highest upregulation of Mgat3 and binding with PHA-E in LIM1215. Downregulation of Man1α1 and Mgat1 in LIM1215 also coincided with the higher degree of incomplete N-glycan processing and accumulation of high mannose type structures as well as bisecting N-glycans when compared to the other two cell lines. This study provides a comprehensive analysis of the membrane N-glycome in three CRC cell lines and identifies N-glycosylation differences that correlate with the histological and pathological features of the cell lines. The unique glycosylation phenotypes may therefore serve as a molecular feature to differentiate CRC disease stages.12 page(s

    Chromosome 7-centric analysis of proteomics data from a panel of human colon carcinoma cell lines

    No full text
    In this manuscript, we describe a shotgun proteomics approach for a comprehensive proteomic analysis of samples including total lysates, membrane, secretome, and exosome fractions from a panel of colorectal cancer cell lines. We will present an analysis of our proteomics data in two alternative formats. First we will discuss a traditional analysis of our data, in which we identify a number of cancer-associated proteins using various proteomic data analysis tools. In a second approach, we use a chromosome format to organize the proteomic data on chromosome 7, allowing the identification of clusters of cancer-associated genes with boundaries defined by physical proximity on different chromosomes.8 page(s

    Comprehensive <i>N</i>‑Glycome Profiling of Cultured Human Epithelial Breast Cells Identifies Unique Secretome <i>N</i>‑Glycosylation Signatures Enabling Tumorigenic Subtype Classification

    No full text
    The secreted cellular sub-proteome (secretome) is a rich source of biologically active glycoproteins. <i>N</i>-Glycan profiling of secretomes of cultured cancer cells provides an opportunity to investigate the link between protein <i>N</i>-glycosylation and tumorigenesis. Utilizing carbon-LC–ESI-CID-MS/MS of protein released native <i>N</i>-glycans, we accurately profiled the secretome <i>N</i>-glycosylation of six human epithelial breast cells including normal mammary epithelial cells (HMEC) and breast cancer cells belonging to luminal A subtype (MCF7), HER2-overexpressing subtype (SKBR3), and basal B subtype (MDA-MB157, MDA-MB231, HS578T). On the basis of intact molecular mass, LC retention time, and MS/MS fragmentation, a total of 74 <i>N</i>-glycans were confidently identified and quantified. The secretomes comprised significant levels of highly sialylated and fucosylated complex type <i>N</i>-glycans, which were elevated in all cancer cells relative to HMEC (57.7–87.2% vs 24.9%, <i>p</i> < 0.0001 and 57.1–78.0% vs 38.4%, <i>p</i> < 0.0001–0.001, respectively). Similarly, other glycan features were found to be altered in breast cancer secretomes including paucimannose and complex type <i>N</i>-glycans containing bisecting β1,4-GlcNAc and LacdiNAc determinants. Subtype-specific glycosylation were observed, including the preferential expression of α2,3-sialylation in the basal B breast cancer cells. Pathway analysis indicated that the regulated <i>N</i>-glycans were biosynthetically related. Tight clustering of the breast cancer subtypes based on <i>N</i>-glycome signatures supported the involvement of <i>N</i>-glycosylation in cancer. In conclusion, we are the first to report on the secretome <i>N</i>-glycosylation of a panel of breast epithelial cell lines representing different subtypes. Complementing proteome and lipid profiling, <i>N</i>-glycome mapping yields important pieces of structural information to help understand the biomolecular deregulation in breast cancer development and progression, knowledge that may facilitate the discovery of candidate cancer markers and potential drug targets
    corecore