29,830 research outputs found

    Effects of solute content on grain refinement in an isothermal melt

    Get PDF
    This is the port-print version of the article. The official published version can be obtained from the link below - Copyright @ 2011 Acta Materialia Inc. Published by Elsevier LtdIt is well accepted in the literature that for effective grain refinement some solute is required in the melt to restrict the growth of the solid even if potent nucleating particles with a favourable physical nature are present. In this paper we investigate the effect of the solute on grain initiation in an isothermal melt, and an analytical model is developed to account for the effect of solute elements on grain size. This study revealed that the solute elements in the liquid ahead of the growing crystals reduce the growth velocity of the nucleated crystals and increase the maximum undercooling achievable before recalescence. This allows more particles to be active in nucleation and, consequently, increases the number density of active particles, giving rise to a finer grain size. The analytical model shows that the final grain size can be related to the maximum undercooling, average growth velocity and solid fraction at the moment of recalescence. Further analysis using the free growth model and experimental data in the literature revealed that for a given alloy system solidified under similar conditions the grain size can be empirically related to 1/Q (Q is the growth restriction factor) to a power of 1/3, which is considerably different from the empirical linear relationship in the literature. It is demonstrated that the 1/3 power law can describe the experimental data more accurately than a linear relationship.The EPSRC is gratefully acknowledged for providing financial support under Grant EP/H026177/1

    Effects of the complex mass distribution of dark matter halos on weak lensing cluster surveys

    Full text link
    Gravitational lensing effects arise from the light ray deflection by all of the mass distribution along the line of sight. It is then expected that weak lensing cluster surveys can provide us true mass-selected cluster samples. With numerical simulations, we analyze the correspondence between peaks in the lensing convergence κ\kappa-map and dark matter halos. Particularly we emphasize the difference between the peak κ\kappa value expected from a dark matter halo modeled as an isolated and spherical one, which exhibits a one-to-one correspondence with the halo mass at a given redshift, and that of the associated κ\kappa-peak from simulations. For halos with the same expected κ\kappa, their corresponding peak signals in the κ\kappa-map present a wide dispersion. At an angular smoothing scale of θG=1arcmin\theta_G=1\hbox{arcmin}, our study shows that for relatively large clusters, the complex mass distribution of individual clusters is the main reason for the dispersion. The projection effect of uncorrelated structures does not play significant roles. The triaxiality of dark matter halos accounts for a large part of the dispersion, especially for the tail at high κ\kappa side. Thus lensing-selected clusters are not really mass-selected. (abridged)Comment: ApJ accepte

    Refining grain structure and porosity of an aluminium alloy with intensive melt shearing

    Get PDF
    The official published version of the article can be obtained at the link below.Intensive melt shearing was achieved using a twin-screw machine to condition an aluminium alloy prior to solidification. The results show that intensive melt shearing has a significant grain-refining effect. In addition, the intensive melt shearing reduces both the volume fraction and the size of porosity. It can reduce the density index from 10.50% to 2.87% and the average size of porosity in the samples solidified under partial vacuum from around 1 mm to 100 μm.Financial support was obtained from the EPSRC and the Technology Strategy Board

    Solidification of Al-Sn-Cu based immiscible alloys under intense shearing

    Get PDF
    The official published version of the Article can be accessed from the link below - Copyright @ 2009 The Minerals, Metals & Materials Society and ASM InternationalThe growing importance of Al-Sn based alloys as materials for engineering applications necessitates the development of uniform microstructures with improved performance. Guided by the recently thermodynamically assessed Al-Sn-Cu system, two model immiscible alloys, Al-45Sn-10Cu and Al-20Sn-10Cu, were selected to investigate the effects of intensive melt shearing provided by the novel melt conditioning by advanced shear technology (MCAST) unit on the uniform dispersion of the soft Sn phase in a hard Al matrix. Our experimental results have confirmed that intensive melt shearing is an effective way to achieve fine and uniform dispersion of the soft phase without macro-demixing, and that such dispersed microstructure can be further refined in alloys with precipitation of the primary Al phase prior to the demixing reaction. In addition, it was found that melt shearing at 200 rpm and 60 seconds will be adequate to produce fine and uniform dispersion of the Sn phase, and that higher shearing speed and prolonged shearing time can only achieve minor further refinement.This work is funded by the EPSRC and DT
    • …
    corecore