22,088 research outputs found

    Operator for Describing Polarization States of a Photon

    Full text link
    Based on the quantized electromagnetic field described by the Riemann-Silberstein complex vector FF, we construct the eigenvector set of F% F, which makes up an orthonormal and complete representation. In terms of % F we then introduce a new operator which can describe the relative ratio of the left-handed and right-handed polarization states of a polarized photon .In FsF^{\prime}s eigenvector basis the operator manifestly exhibits a behaviour which is similar to a phase difference between two orientations of polarization of a light beam in classical optics.Comment: This version (5 pages) will be published in the European Physical Journal

    Periodicities in Solar Coronal Mass Ejections

    Full text link
    Mid-term quasi-periodicities in solar coronal mass ejections (CMEs) during the most recent solar maximum cycle 23 are reported here for the first time using the four-year data (February 5, 1999 to February 10, 2003) of the Large Angle Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). In parallel, mid-term quasi-periodicities in solar X-ray flares (class >M5.0) from the Geosynchronous Operational Environment Satellites (GOES) and in daily averages of Ap index for geomagnetic disturbances from the World Data Center (WDC) at the International Association for Geomagnetism and Aeronomy (IAGA) are also examined for the same four-year time span. Several conceptual aspects of possible equatorially trapped Rossby-type waves at and beneath the solar photosphere are discussed.Comment: Accepted by MNRAS, 6 figure

    Modified smoothed particle method and its application to transient heat conduction

    Get PDF
    Inspired by the idea of applying kernel approximation to Taylor series expansions proposed in the corrective smoothed particle method (CSPM), a modi¿cation is developed to improve the accuracy of the approximations especially for particles in the boundary region. The large global error of the function approximation in CSPM is reduced in the present method. The large local truncation error in the boundary region for the ¿rst derivative approximation and large local truncation error in the entire domain for the second derivative approximation are also resolved. The e¿ciency of the proposed method is demonstrated by solving one- and two-dimensional transient heat conduction problems

    Robust Feature-Preserving Mesh Denoising Based on Consistent Sub-Neighborhoods

    Get PDF
    published_or_final_versio

    Integrated health monitoring for a steel beam : an experimental study

    Full text link
    Civil infrastructures begin to deteriorate once they are built and used. Detecting damages in a structure to maintain its safety is a topic that has received considerable attention in the literature in recent years. Many methods are developed, including global vibration-based methods and local GW-based methods. The global vibration-based method uses changes in modal properties to detect damage. The advantage of this approach is that the vibration properties are straightforward to be measured. The disadvantage of this method is that it might not be sensitive to small damage. On the other hand, local method, such as the guided waves (GW) based method is sensitive to small damage, but its sensing range is small. In this paper, an integrated structural health monitoring test scheme is developed to detect damage in a steel beam. Different saw cuts of various depths are made to simulate crack damage. Vibration tests and guided wave tests are conducted after each cut. The vibration method is used to detect the overall condition change of the beam, whereas the GW method is used to locate and quantify the damage. Experimental results show that the integrated method is efficient to detect and quantify local crack damage in steel structures and its influence on the global structure conditions

    Dynamic Provable Data Possession Protocols with Public Verifiability and Data Privacy

    Full text link
    Cloud storage services have become accessible and used by everyone. Nevertheless, stored data are dependable on the behavior of the cloud servers, and losses and damages often occur. One solution is to regularly audit the cloud servers in order to check the integrity of the stored data. The Dynamic Provable Data Possession scheme with Public Verifiability and Data Privacy presented in ACISP'15 is a straightforward design of such solution. However, this scheme is threatened by several attacks. In this paper, we carefully recall the definition of this scheme as well as explain how its security is dramatically menaced. Moreover, we proposed two new constructions for Dynamic Provable Data Possession scheme with Public Verifiability and Data Privacy based on the scheme presented in ACISP'15, one using Index Hash Tables and one based on Merkle Hash Trees. We show that the two schemes are secure and privacy-preserving in the random oracle model.Comment: ISPEC 201
    corecore