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Modified smoothed particle method and its application to transient heat
conduction

Q. Hou, Y. Fan

Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

Abstract

Inspired by the idea of applying kernel approximation to Taylor series expansions proposed in the corrective
smoothed particle method (CSPM), a modification is developed to improve the accuracy of the approxima-
tions especially for particles in the boundary region. The large global error of the function approximation
in CSPM is reduced in the present method. The large local truncation error in the boundary region for the
first derivative approximation and large local truncation error in the entire domain for the second derivative
approximation are also resolved. The efficiency of the proposed method is demonstrated by solving one-
and two-dimensional transient heat conduction problems.

Keywords: modified smoothed particle method, kernel approximation, Taylor series expansion, transient
heat conduction

1. Introduction

As a meshfree, Lagrangian, particle method for solving fluid flow problems, the smoothed particle
hydrodynamics (SPH) method was originally developed by Lucy [13], Gingold and Monaghan [8] indepen-
dently in 1977 for the simulation of three-dimensional astrophysical problems. For details on the general
aspects of SPH and its applications to astrophysical and cosmological flows, see the review papers [14, 15].
After its invention, SPH has been studied extensively and becomes a powerful tool for applications in nu-
merous other areas; see the recent overview [12] and references therein. Libersky and Petschek [9] extended
SPH to study the response of elastic bodies where material strength plays an important role, and surveyed
the advantages and progress in this field [17]. Many other references can also be found in the review papers
[1, 18].

Although SPH has been applied successfully in a broad spectrum of engineering problems, it has several
inherent drawbacks, among which boundary deficiency [2] and tensile instability [5], are notable ones that
can lead to low accuracy of the SPH approximations. Attempts to address these shortcomings led to the
development of a number of variants of the original SPH method [1, 10, 12]. By combining the kernel
approximation concept in SPH with a Taylor series expansion, a so-called corrective smoothed particle
method (CSPM) has been developed by Chen et al. [4]. As an improvement to the standard SPH method,
the CSPM algorithm not only remedies the boundary deficiency problem in SPH [4], but also avoids the
tensile instability problem in stress wave propagation [5]. It has been applied to many dynamic problems
such as heat conduction [4], elastodynamics [5, 6, 16], Burgers’ equation [3] and elastoplastic dynamics [7].
However, the low accuracy in the approximations of the function and its second-order derivatives restricts
its further development. Inspired by the idea of Chen [4], a modification to CSPM, which retains all high
order derivative terms in the approximations of low order derivatives, is proposed herein to further improve
the low accuracy in the approximations especially at the boundary region.
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The paper is organized as follows. Section 2 gives a brief introduction to the conventional SPH method.
The modified smoothed particle method is presented in Section 3, where local truncation error and global
error are analyzed. Furthermore, a detailed comparison with CSPM is also presented. The applications
of MSPM to several transient heat conduction problems are presented in Sections 4. Section 5 gives the
conclusions.

2. Smoothed particle hydrodynamics

In the original SPH method, the kernel approximation of a function f (x), x ∈ R3 is given by

⟨ f (x)⟩ :=
∫
Ω

f (ξ)W(x − ξ, h)dξ, (2.1)

where ⟨·⟩ denotes the approximation, x and ξ are position vectors. The weighting function W(x − ξ, h) is
generally called kernel, and the smoothing length h is a size measure of the support Ω of the kernel. The
support is required to be compact, i.e. W(x − x j, h) = 0, if |x − x j| > κh, where κ is a scale parameter,
usually taken as 2. Using this property, spatial derivatives are transformed into their SPH approximations
via integration by parts,

⟨∇ f (x)⟩ =
∫
Ω

∇ f (ξ)W(x − ξ, h)dξ

=

∫
S

f (ξ)W(x − ξ, h)n⃗dS −
∫
Ω

f (ξ)∇ξW(x − ξ, h)dξ

=

∫
Ω

f (ξ)∇xW(x − ξ, h)dξ

= ∇ ⟨ f (x)⟩ , (2.2)

where ∇ is the gradient operator and n⃗ is the outer unit normal on the surface S .
Another important concept in SPH is the so-called particle approximation. Provided domain Ω is di-

vided into N parts (particles located at x j) with volumes ∆V j ( j = 1, 2, . . . ,N), the integrals in (2.1) and
(2.2) are then approximated by the Riemann sums

⟨ f (x)⟩ .=
∑

j

f (x j)W(x − x j, h)∆V j, (2.3)

and
⟨∇ f (x)⟩ .=

∑
j

f (x j)∇W(x − x j, h)∆V j. (2.4)

The first-order derivative approximations in other forms can be found in [14].
In SPH the kernel W(x − x′, h) can be chosen differently based on the specific problem. It is generally

required to have the following properties:

(i) normalization condition:
∑

j W(x − x j, h)∆V j = 1;

(ii) symmetry: W(x − x j, h) = W(x j − x, h);

(iii) positivity: W(x − x j, h) > 0;
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(iv) δ-function consistency: limh→0 W(x − x j, h) = δ(x − x j), where δ is the Dirac delta function;

(v) monotonically decreasing with respect to r := |x − x j|.

In SPH, the volume ∆V j is further determined by mass/density ratio, i.e. ∆V j = m j/ρ j. In the following
sections, the approximation symbol ⟨·⟩ will be neglected, and the abbreviations W := W(x − ξ, h) and
W j := W(x − x j, h) will be used, for simplicity. In addition, the accuracy of (2.3) and (2.4) depends upon
the chosen kernel and smoothing length.

Remark 1 In particle methods, constant mass of each particle is assumed to ensure mass conservation.
Consequently, it is only necessary for the volume ∆V j to be further determined by ∆V j = m j/ρ j when the
density ρ j is changing.

3. Modified smoothed particle method

Inspired by the idea of applying kernel approximation to a Taylor series expansion developed by Chen
et al. [4], we propose a modified smoothed particle method (MSPM) in this section. To demonstrate the im-
provements, a comparison between the present method and the CSPM algorithm is described. The method
will be introduced by a three-dimensional example. Its application to one- and two-dimensional problems
can be easily implemented. The notations x = (x1, x2, x3), ξ = (ξ1, ξ2, ξ3) and x j = (x j,1, x j,2, x j,3) are used.

The Taylor series of a function f (x) is

f (ξ) = f (x) +
∑
α

∂ f
∂xα

(
ξα − xα

)
+

∑
α,β

1
2!
∂2 f
∂xα∂xβ

(
ξα − xα

)(
ξβ − xβ

)
+ · · · , (3.1)

where the indices α = 1, 2, 3 and β = 1, 2, 3. By introducing two vectors p and u:

p =
(
ξ1 − x1, ξ2 − x2, ξ3 − x3,

(
ξ1 − x1

)2/2,
(
ξ2 − x2

)2/2,
(
ξ3 − x3

)2/2,(
ξ1 − x1

)(
ξ2 − x2

)
,
(
ξ2 − x2

)(
ξ3 − x3

)
,
(
ξ1 − x1

)(
ξ3 − x3

)) (3.2)

and

u =
(
∂ f
∂x1
,
∂ f
∂x2
,
∂ f
∂x3
,
∂2 f
∂x2

1

,
∂2 f
∂x2

2

,
∂2 f
∂x2

3

,
∂2 f
∂x1∂x2

,
∂2 f
∂x2∂x3

,
∂2 f
∂x1∂x3

)T

, (3.3)

the formulation (3.1) is rewritten as
f (ξ) − f (x) .= p u. (3.4)

where third and higher order derivative terms have been neglected.

3.1. Kernel approximation of the derivatives
Multiplying both sides of (3.4) with the first derivative of the kernel Wξα := ∂W(x−ξ,h)

∂ξα
and integrating

over Ω yields ∫
Ω

(
f (ξ) − f (x)

)
Wξαdξ =

∫
Ω

p uWξαdξ. (3.5)

Similarly, with Wξαξβ := ∂W(x−ξ,h)
∂ξα∂ξβ

, we obtain∫
Ω

(
f (ξ) − f (x)

)
Wξαξβdξ =

∫
Ω

p uWξαξβdξ. (3.6)
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For simplicity we introduce another vector

w :=
(
Wξ1 ,Wξ2 ,Wξ3 ,Wξ1ξ1 ,Wξ2ξ2 ,Wξ3ξ3 ,Wξ1ξ2 ,Wξ2ξ3 ,Wξ1ξ3

)T
. (3.7)

After writing the integrals in (3.5) and (3.6) into Riemann sums, a linear system consisting of nine equations
is obtained

Au = b, or AIJuJ = bI , I, J = 1, 2, . . . , 9, (3.8)

where
AIJ =

∑
j

wI(x j)pJ(x j)∆V j, (3.9)

and
bI =

∑
j

(
f (x j) − f (x)

)
wI(x j)∆V j. (3.10)

Vector b contains all information of the function f . When identical volume is used for all the particles, the
term ∆V j in both sides of (3.8) cancels out, under which sense the particles can be referred to as nodes or
grid points but without connectivity.

Remark 2 Retaining third-order derivatives in the Taylor series expansion (3.1) would lead to a system
containing 19 algebraic equations. With the increase of higher-order derivatives remaining in (3.1), the
number of algebraic equations increases rapidly and more cost is needed to compute u. This is the reason
why only up to first-order derivative terms are retained in most of the meshfree methods.

3.2. Kernel approximation of the function

By multiplying both sides of (3.4) with W, integrating over Ω and writing the integral in Riemann
summation form, we obtain ∑

j

(
f (x j) − f (x)

)
W j∆V j =

∑
j

p uW j∆V j. (3.11)

Then the reconstructed function is obtained as

f (x) =
1∑

j W j∆V j

(∑
j

f (x j)W j∆V j −
∑

j

p uW j∆V j

)
. (3.12)

Substitution of all the derivatives uJ , (J = 1, · · · , 9) obtained from (3.8) into (3.12) gives the estimated
function values.

Remark 3 For time dependent PDEs, kernel estimate of the function (3.12) is rarely performed, because
function values at previous time step are used to get the approximated derivatives from (3.8). If the function
itself appears in the PDEs, function values are also taken from the previous time step.

3.3. Comparing with CSPM

Neglecting all the derivative terms in (3.12), function approximation in MSPM is reduced to that in
CSPM

f (x) :=
∑

j f (x j)W j∆V j∑
j W j∆V j

. (3.13)
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For interior particles, the supports of the corresponding kernels have no overlap with the boundaries of
the domain, formula (3.13) is further reduced to the conventional SPH kernel approximation (2.3) due
to the normalization condition

∑
j W j∆V j = 1. Owing to the symmetry of the kernel function, we have∑

j(x j − x)W j∆V j = 0. Therefore, the truncation errors in (3.13) and (2.3) are second order. However, for
particles near or at the boundaries,

∑
j W j∆V j , 1 because the support of W j is truncated by the boundary.

Consequently, the truncation error in (3.13) degenerates to first order, and the function approximation (2.3)
even does not have zero-order accuracy [6].

By retaining up to first-order derivative terms in (3.5) and up to second-order derivative terms in (3.6),
we obtain kernel approximations of the derivatives in CSPM

Ãu = b, (3.14)

where Ã is the same as A defined in (3.8) except that AIJ = 0 (I = 1, 2, 3, J = 4, 5, . . . , 9), u is the same as
defined in (3.3) and b is defined in (3.10).

The kernel function plays an essential role in meshfree methods. The computationally efficient and
widely used cubic spline function is chosen as the kernel in this article,

W j :=
G
hλ


1 − 1.5q2 + 0.75q3, 0 6 q < 1;

0.25(2 − q)3, 1 6 q < 2;

0, q > 2;

(3.15)

where q := |x j − x|/h, λ indicates the dimension of the problem, and the normalized coefficient G equals to
2/3, 10/(7π) and 1/π for λ = 1, 2, 3, respectively. The first and second derivatives of the kernel function,
wI(x j) in (3.9), are determined by

∂W(x j)
∂xα

:=
1
h

dW
dq

xα − x j,α

r
(3.16)

∂2W(x j)
∂xα∂xβ

:=
1
h2

d2W
dq2

(
xα − x j,α

)(
xβ − x j,β

)
r2 +

1
h

dW
dq

(
δαβ

r
−

(
xα − x j,α

)(
xβ − x j,β

)
r3

)
(3.17)

where δαβ is the Kronecker delta, and α, β = 1, 2, 3.

3.4. Weight functions: partition of nullity
To describe the weight functions, a one-dimensional problem is investigated for simplicity. The approx-

imated derivatives solved from (3.8) are(
f ′(x)
f ′′(x)

)
= A−1

∑
j

F j f j, (3.18)

where

A =
( ∑

j(x j − x)W j,x∆V j
∑

j(x j − x)2/2W j,x∆V j∑
j(x j − x)W j,xx∆V j

∑
j(x j − x)2/2W j,xx∆V j

)
, (3.19)

F j =

(
W j,x∆V j − δi j

∑
j W j,x∆V j

W j,xx∆V j − δi j
∑

j W j,xx∆V j

)
, (3.20)

with f j := f (x j), W j,x := Wx(x − x j, h) and W j,xx := Wxx(x − x j, h).
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We rewrite equation (3.18) as
f (k) =

∑
j

Φ j(k) f j, k = 1, 2, (3.21)

where f (k) equals the kth derivative of f (x), and

Φ j(1) = (1, 0)A−1F j,

Φ j(2) = (0, 1)A−1F j.
(3.22)

The function Φ j(k) depends on the employed kernel and can be viewed as weight functions in FDM or
shape functions in FEM. We call them weight functions herein because they are used to solve the PDEs in
strong form and generate the weight coefficients for the derivatives. The weight functions form a partition
of nullity (PN), i.e.

∑
jΦ j(k) = 0, (k = 1, 2). This property is important for numerical accuracy and can be

proved as follows: ∑
j

Φ j(1) = (1, 0)A−1
∑

j

F j = (1, 0)A−1(0, 0)T = 0,

and similarly
∑

jΦ j(2) = 0.
Although the property is demonstrated for one-dimensional derivatives, it holds for multi-dimensional

problems too. The weight function in standard SPH derivatives (2.4) does not have the property. Substituting
the solved derivatives into (3.12), the approximated function and the corresponding weight function for
function approximation can be obtained. These weight functions (shape functions) can be used to solve
PDEs in weak form, but special attention is needed for the enforcement of the essential boundary conditions
[10].

3.5. Error estimate

For easy explanation, the local truncation error in the proposed method is presented by considering a
one-dimensional system. Accordingly, (3.1) is reduced to

f (ξ) = f (x) + f ′(x)(ξ − x) +
1
2

f ′′(x)(ξ − x)2 + O((ξ − x)3). (3.23)

By multiplying both sides with Wξ, integrating over the domain Ω, and then subtracting (3.5), we obtain

(
f ′(x) − ⟨

f ′(x)
⟩ ) ∫

Ω

(ξ − x)Wξdξ = −
(
f ′′(x) − ⟨

f ′′(x)
⟩ ) ∫

Ω

1
2

(ξ − x)2Wξdξ + O(h3). (3.24)

With respect to the cubic spline kernel, its first derivative Wξ is antisymmetric, and satisfies the normal-
ization condition

∫
Ω

(ξ− x)Wξdξ = 1 (see [11] for details). Owing to the antisymmetry property, the integral
of (ξ − x)2Wξ vanishes for points far from the system boundary. Together with the normalization condition,
the local truncation error of the first derivative approximation is

τ1 := f ′(x) − ⟨
f ′(x)

⟩
= O(h3). (3.25)

For points near or on the boundaries, truncation of the kernel by the boundary results in
∫
Ω

(ξ − x)Wξdξ , 1
and

∫
Ω

1
2 (ξ − x)2Wξdξ , 0. If we assume

∫
Ω

(ξ − x)Wξdξ ≥ C, the local error becomes τ1 = O(h2), because
| f ′′(x) − ⟨ f ′′(x)⟩ | is bounded and

∫
Ω

1
2 (ξ − x)2Wξdξ ≤ Ch2, here C is a generic positive constant.
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Similarly, we have (
f ′(x) − ⟨

f ′(x)
⟩ ) ∫

Ω

(ξ − x)Wξξdξ

= − (
f ′′(x) − ⟨

f ′′(x)
⟩ ) ∫

Ω

1
2

(ξ − x)2Wξξdξ

+ f ′′′(x)
∫
Ω

1
6

(ξ − x)3Wξξdξ + O(h4).

(3.26)

For the cubic spline kernel, its second derivative Wξξ is symmetric, and satisfies the normalization condition∫
Ω

(ξ − x)Wξξ/2dξ = 1 (see [11]). Consequently, for interior points, the local truncation error of the second
derivative approximation is

τ2 := f ′′(x) − ⟨
f ′′(x)

⟩
= O(h4). (3.27)

For points near or on the boundaries, truncation of the kernel leads to
∫
Ω

1
2 (ξ − x)2Wξdξ , 1 and

∫
Ω

(ξ −
x)Wξξdξ , 0. If we assume

∫
Ω

1
2 (ξ − x)2Wξdξ ≥ C, and then the local error becomes τ2 = O(h), because

| f ′(x) − ⟨ f ′(x)⟩ | is bounded and
∫
Ω

(ξ − x)Wξdξ ≤ Ch.
Similarly, the local error of the function approximation τ0 := f (x) − ⟨ f (x)⟩ is O(h4) for interior points,

and O(h3) for points near the boundary. As mentioned before, function approximation can be used in the
weak form of PDEs, but it is rarely used for equations in strong form. Therefore, the approximation of
f (x), f ′(x) and f ′′(x) has accuracy of h3, h2 and h, respectively.

Remark 4 In above assumptions
∫
Ω

(ξ − x)Wξdξ ≥ C and
∫
Ω

1
2 (ξ − x)2Wξdξ ≥ C, constant C depends on

the shape of the domain. These assumptions are reasonable because most of the considered domains are
regular.

4. Numerical examples

In this section, we will illustrate our method with two typical initial boundary heat conduction prob-
lems. The spacial derivatives are approximated using the present method, while the temporal derivative is
integrated by the forward Euler’s method, which is conditionally stable. The critical time step size is related
to the particle spacing and smoothing length. To meet the stability condition, the critical time step that is
(∆x)2/2λ over all particles was found in [4], where ∆x is the particle distance.

4.1. 1D heat conduction

Consider the following problem

∂T
∂t
=
∂2T
∂x2 , 0 < x < π, t > 0 (4.1)

with homogeneous Dirichlet boundary condition

T |∂Ω = 0, (4.2)

and initial condition
T (x, 0) = 10 sin x, 0 ≤ x ≤ π, (4.3)

where the exact solution is
T (x, t) = 10e−t sin x. (4.4)

7



0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

x

T

t=0.25

t=0.50

t=0.75
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Fig. 1 Numerical results (symbols) and exact solution (solid lines) for T with ∆t = 0.001 for t = 0.25, t =
0.5, t = 0.75 and t = 1.0, respectively.

In the simulation of the above heat equation, Np = 21 particles, scale factor Ch = 1.2, and time-step
size ∆t = 0.001 are adopted. In Fig. 1, the exact solutions T (x, t) = 10e−t sin x (solid lines) are plotted in
comparison with the numerical results (symbols) when t = 0.25, t = 0.5, t = 0.75 and t = 1. It is evident
that the MSPM results agree with the exact solutions very well.

The variations of the L2 norm errors with different number of particles are shown in Table 1. For
comparison the numerical error of CSPM is also presented. The numbers of particles are 21, 31, 41, 51
and 61. It is evident that the numerical behaviour of the present method is better than that of CSPM.
This verifies the theoretical analysis given in Section 3.3. The numerical error is of the order O(h2). It is
consistent with the theoretical results as demonstrated in Section 3.5, and is higher than the accuracy order
in the second derivative approximation. This is because large pointwise errors happened in the boundary
region are largely improved due to the enforcement of boundary conditions.

Table 1: Effect of the number of particles Np on the L2-norm errors: a CSPM, b MSPM.

∆x Errora Errorb Errorb/(∆x)2

π/20 0.0590 0.0566 2.30
π/30 0.0302 0.0293 2.67
π/40 0.0167 0.0162 2.63
π/50 0.0089 0.0086 2.19

4.2. 2D heat conduction
Considering the following heat conduction problem in a 2-D plate

∂T
∂t
=
∂2T
∂2x
+
∂2T
∂2y
, 0 < x, y < π, t > 0 (4.5)
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with boundary condition
T |∂Ω = 0 (4.6)

and initial condition
T (x, y, 0) = sin x sin y, 0 ≤ x, y ≤ π, (4.7)

where the exact solution is
T (x, y, t) = e−2tc sin x sin y. (4.8)

The distribution of Np = 21 × 21 particles with equal spacing ∆x = ∆y is employed in MSPM. The
smoothing length h is taken as 1.2∆x. The time step size is ∆t = 10−4. The numerical results at time
t = 0.2 s are depicted in Fig. 2, where the exact solutions are also plotted in comparison with the numerical
results. The MSPM solution agrees with the exact solutions so well that the difference between them is
hardly visible. Figure 3 gives the time variance of temperature at the centre of the plate. As expected, the
MSPM calculations are in good correlation with the exact solution, and the small discrepancy due to the
coarse model can be eliminated by employing more particles.

x

y

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 2 Temperature distribution in the plate at time t = 0.2 s computed by MSPM with 21×21 particles
(dotted lines), with comparison with the exact solution (solid lines).

The L2 norm errors with different number of particles are shown in Table 2. As expected the numerical
error is of the order O(h), which is consistent with the theoretical analysis in Section 3.5. The relationship

Table 2: Effect of the number of particles Np on the L2-norm error.

∆x Error Error/∆x

π/10 0.0678 0.22
π/20 0.0359 0.23
π/30 0.0255 0.24
π/40 0.0204 0.26
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Fig. 3 Time history of the temperature at the centre of the plate computed by MSPM with different number
of particles.

of the error and the scale factor as shown in Fig. 4 indicates that the error decreases with the decrease of the
smoothing length with small variations.
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Fig. 4 Effect of the scale factor Ch on the L2-norm error with Np = 21 × 21 particles.

5. Conclusions

Based on the technique of combining kernel approximation and Taylor series expansions as proposed
in the corrective smoothed particle method (CSPM) by Chen et al. [4], a new meshfree method, the mod-
ified smoothed particle method (MSPM), is developed and successfully applied to initial boundary value
problems in heat conduction. The performance of the method are demonstrated by two heat conduction
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problems.
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