1,663 research outputs found
The first non-mammalian CXCR5 in a teleost fish: molecular cloning and expression analysis in grass carp (Ctenopharyngodon idella)
<p>Abstract</p> <p>Background</p> <p>Chemokines, a group of small and structurally related proteins, mediate chemotaxis of various cell types via chemokine receptors. In mammals, seven different CXC chemokine receptors denoted as CXCR1 to CXCR7 have been reported. However, the chemokine receptor CXCR5 has not been reported in other vertebrates.</p> <p>Results</p> <p>In the present study, the genomic sequence of CXCR5 was isolated from the grass carp <it>Ctenopharyngodon idella</it>. The cDNA sequence of grass carp CXCR5 (gcCXCR5) consists of 1518 bp with a 43 bp 5' untranslated region (UTR) and a 332 bp 3' UTR, with an open reading frame of 1143 bp encoding 381 amino acids which are predicted to have seven transmembrane helices. The characteristic residues (DRYLAIVHA) and conserved cysteine residues are located in the extracellular regions and in the third to seventh transmembrane domains. The deduced amino acid sequence shows 37.6-66.6% identities with CXCR5 of mammals, avian and other fish species. The grass carp gene consists of two exons, with one intervening intron, spaced over 2081 bp of genomic sequence. Phylogenetic analysis clearly demonstrated that the gcCXCR5 is clustered with those in other teleost fish and then in chicken and mammals. Real-time PCR analysis showed that gcCXCR5 was expressed in all tested organs/tissues and its expression level was the highest in trunk kidney, followed by in the spleen. The expression of gcCXCR5 was significantly modulated by immunostimulants such as peptidoglycan (PGN), lipopolysaccharide (LPS), polyinosinic-polycytidylic acid sodium salt (Poly I:C) and phytohaemagglutinin (PHA).</p> <p>Conclusion</p> <p>The cDNA and genomic sequences of CXCR5 have been successfully characterized in a teleost fish, the grass carp. The CXCR5 has in general a constitutive expression in organs/tissues examined, whereas its expression was significantly up-regulated in immune organs and down-regulated in brain, indicating its potential role in immune response and central nervous system.</p
The role of underground salt caverns for large-scale energy storage: A review and prospects
To achieve China's goal of carbon neutrality by 2030 and achieving a true carbon balance by 2060, it is imperative to implement large-scale energy storage (carbon sequestration) projects. In underground salt formations, the salt cavern constructed by the leaching method is large, stable, and airtight, an ideal space for large-scale energy storage. Currently, salt caverns have been widely used for natural gas, crude oil, hydrogen, compressed air, and other energy storages. With the demand for peak-shaving of renewable energy and the approach of carbon peaking and carbon neutrality goals, salt caverns are expected to play a more effective role in compressed air energy storage (CAES), large-scale hydrogen storage, and temporary carbon dioxide storage. Herein the innovation of this paper lies in conducting a comprehensive review of the history, current status, and future development trends of salt cavern energy storage (SCES) technology. Firstly, we provide an overview of natural gas and oil storage in various types of salt caverns worldwide and assess the future prospects for CAES and hydrogen storage. Secondly, we propose a novel model for carbon dioxide storage in salt caverns based on the carbon cycle to effectively address the spatiotemporal disparity between carbon capture and utilization. In the future plans, salt caverns will play a crucial role throughout the entire carbon cycle by facilitating carbon storage, compressed air storage, and hydrogen storage. Additionally, we introduce the concept of utilizing sediment space for large-scale energy storage purposes. Finally, we anticipate the future development of salt caverns for energy storage in China to focus on large-scale, integrated, and intelligent projects, emphasizing their significance in achieving enhanced efficiency and sustainability. Accordingly, this review promotes thorough knowledge of SCES, provides guidance on operating large-scale SCES projects, encourages energy engineers to focus more on SCES research, and provides an overview of advanced technology. This review also provides an important basis and reference for the development and expansion of the SCES industries.The authors would like to gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 51834003 , 52074044 , 52122403, 52022014 , 52274073 ), the Graduate Research and Innovation Foundation of Chongqing, China (CYB22023), the Chongqing Talent Program Young Top Talents, China (cstc2022ycjh-bgzxm0035), and the Fundamental Research Funds for the Central Universities, China (2021CDJQY-030), all greatly appreciated
The DArk Matter Particle Explorer mission
The DArk Matter Particle Explorer (DAMPE), one of the four scientific space
science missions within the framework of the Strategic Pioneer Program on Space
Science of the Chinese Academy of Sciences, is a general purpose high energy
cosmic-ray and gamma-ray observatory, which was successfully launched on
December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE
scientific objectives include the study of galactic cosmic rays up to
TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the
search for dark matter signatures in their spectra. In this paper we illustrate
the layout of the DAMPE instrument, and discuss the results of beam tests and
calibrations performed on ground. Finally we present the expected performance
in space and give an overview of the mission key scientific goals.Comment: 45 pages, including 29 figures and 6 tables. Published in Astropart.
Phy
Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons
High energy cosmic ray electrons plus positrons (CREs), which lose energy
quickly during their propagation, provide an ideal probe of Galactic
high-energy processes and may enable the observation of phenomena such as
dark-matter particle annihilation or decay. The CRE spectrum has been directly
measured up to TeV in previous balloon- or space-borne experiments,
and indirectly up to TeV by ground-based Cherenkov -ray
telescope arrays. Evidence for a spectral break in the TeV energy range has
been provided by indirect measurements of H.E.S.S., although the results were
qualified by sizeable systematic uncertainties. Here we report a direct
measurement of CREs in the energy range by the
DArk Matter Particle Explorer (DAMPE) with unprecedentedly high energy
resolution and low background. The majority of the spectrum can be properly
fitted by a smoothly broken power-law model rather than a single power-law
model. The direct detection of a spectral break at TeV confirms the
evidence found by H.E.S.S., clarifies the behavior of the CRE spectrum at
energies above 1 TeV and sheds light on the physical origin of the sub-TeV
CREs.Comment: 18 pages, 6 figures, Nature in press, doi:10.1038/nature2447
Precision Measurement of the Mass of the Lepton
An energy scan near the pair production threshold has been performed
using the BESIII detector. About pb of data, distributed over four
scan points, was collected. This analysis is based on pair decays to
, , , , , , , and
final states, where denotes a charged or . The mass of the
lepton is measured from a maximum likelihood fit to the pair production
cross section data to be )
MeV/, which is currently the most precise value in a single measurement.Comment: 13 pages, 7 figure
Search for C-parity violation in and
Using events recorded in
collisions at 3.686 GeV with the BESIII at the BEPCII collider, we
present searches for C-parity violation in and decays via . No significant
signals are observed in either channel. Upper limits on the branching fractions
are set to be and
at the 90\%
confidence level. The former is one order of magnitude more stringent than the
previous upper limit, and the latter represents the first limit on this decay
channel.Comment: 7 pages, 2 figure
Observation of decays into vector meson pairs , , and
Decays of to vector meson pairs , and
are observed for the first time using
\psip events accumulated at the BESIII detector at the BEPCII
collider. The branching fractions are measured to be , , and , for , , and ,
respectively. The observation of decays into a pair of vector
mesons , and indicates that the hadron
helicity selection rule is significantly violated in decays. In
addition, the measurement of gives the rate of doubly
OZI-suppressed decay. Branching fractions for and
decays into other vector meson pairs are also measured with improved precision.Comment: 4 pages, 2 figure
Study of and and
We study the decays of and to the final states
and based on a single
baryon tag method using data samples of
and events collected with
the BESIII detector at the BEPCII collider. The decays to
are observed for the first time. The
measured branching fractions of and
are in good agreement with, and much
more precise, than the previously published results. The angular parameters for
these decays are also measured for the first time. The measured angular decay
parameter for , , is found to be negative, different to the other
decay processes in this measurement. In addition, the "12\% rule" and isospin
symmetry in the and and
systems are tested.Comment: 11 pages, 7 figures. This version is consistent with paper published
in Phys.Lett. B770 (2017) 217-22
Measurement of the proton form factor by studying
Using data samples collected with the BESIII detector at the BEPCII collider,
we measure the Born cross section of at 12
center-of-mass energies from 2232.4 to 3671.0 MeV. The corresponding effective
electromagnetic form factor of the proton is deduced under the assumption that
the electric and magnetic form factors are equal . In
addition, the ratio of electric to magnetic form factors, , and
are extracted by fitting the polar angle distribution of the proton
for the data samples with larger statistics, namely at 2232.4 and
2400.0 MeV and a combined sample at = 3050.0, 3060.0 and 3080.0 MeV,
respectively. The measured cross sections are in agreement with recent results
from BaBar, improving the overall uncertainty by about 30\%. The
ratios are close to unity and consistent with BaBar results in
the same region, which indicates the data are consistent with the
assumption that within uncertainties.Comment: 13 pages, 24 figure
Observation of the state in at BESIII
We report the observation of the in the process with a statistical
significance of , in data samples at center-of-mass energies
4.230, 4.260, 4.360, 4.420 and 4.600~GeV collected with the BESIII
detector at the BEPCII electron positron collider. The measured mass of the
is ~MeV/, where the first error is
statistical and the second systematic, and the width is less than ~MeV at
the 90\% confidence level. The products of the Born cross sections for
and the branching ratio are also measured. These measurements are in good
agreement with the assignment of the as the charmonium
state.Comment: 7 pages, 3 figures, version to appear in Phys. Rev. Let
- …