10 research outputs found

    Uncovering the potential molecular mechanism of liraglutide to alleviate the effects of high glucose on myoblasts based on high-throughput transcriptome sequencing technique

    No full text
    Abstract Background Myoblasts play an important role in muscle growth and repair, but the high glucose environment severely affects their function. The purpose of this study is to explore the potential molecular mechanism of liraglutide in alleviating the effects of high glucose environments on myoblasts. Methods MTT, western blot, and ELISA methods were used to investigate the role of liraglutide on C2C12 myoblasts induced by high glucose. The high-throughput transcriptome sequencing technique was used to sequence C2C12 myoblasts from different treated groups. The DESeq2 package was used to identify differentially expressed-mRNAs (DE-mRNAs). Then, functional annotations and alternative splicing (AS) were performed. The Cytoscape-CytoHubba plug-in was used to identify multicentric DE-mRNAs. Results The MTT assay results showed that liraglutide can alleviate the decrease of myoblasts viability caused by high glucose. Western blot and ELISA tests showed that liraglutide can promote the expression of AMPKα and inhibit the expression of MAFbx, MuRF1 and 3-MH in myoblasts. A total of 15 multicentric DE-mRNAs were identified based on the Cytoscape-CytoHubba plug-in. Among them, Top2a had A3SS type AS. Functional annotation identifies multiple signaling pathways such as metabolic pathways, cytokine-cytokine receptor interaction, cAMP signaling pathway and cell cycle. Conclusion Liraglutide can alleviate the decrease of cell viability and degradation of muscle protein caused by high glucose, and improves cell metabolism and mitochondrial activity. The molecular mechanism of liraglutide to alleviate the effect of high glucose on myoblasts is complex. This study provides a theoretical basis for the clinical effectiveness of liraglutide in the treatment of skeletal muscle lesions in diabetes

    Additional file 1 of Uncovering the potential molecular mechanism of liraglutide to alleviate the effects of high glucose on myoblasts based on high-throughput transcriptome sequencing technique

    No full text
    Additional file 1: Table S1. All primers used for real time-PCR. Figure S1. Expression validation of Ccl2, Kif11, Cdc20 and Top2a by real-time PCR

    QSAR Implementation for HIC Retention Time Prediction of mAbs Using Fab Structure: A Comparison between Structural Representations

    No full text
    Monoclonal antibodies (mAbs) constitute a rapidly growing biopharmaceutical sector. However, their growth is impeded by high failure rates originating from failed clinical trials and developability issues in process development. There is, therefore, a growing need for better in silico tools to aid in risk assessment of mAb candidates to promote early-stage screening of potentially problematic mAb candidates. In this study, a quantitative structure–activity relationship (QSAR) modelling workflow was designed for the prediction of hydrophobic interaction chromatography (HIC) retention times of mAbs. Three novel descriptor sets derived from primary sequence, homology modelling, and atomistic molecular dynamics (MD) simulations were developed and assessed to determine the necessary level of structural resolution needed to accurately capture the relationship between mAb structures and HIC retention times. The results showed that descriptors derived from 3D structures obtained after MD simulations were the most suitable for HIC retention time prediction with a R2 = 0.63 in an external test set. It was found that when using homology modelling, the resulting 3D structures became biased towards the used structural template. Performing an MD simulation therefore proved to be a necessary post-processing step for the mAb structures in order to relax the structures and allow them to attain a more natural conformation. Based on the results, the proposed workflow in this paper could therefore potentially contribute to aid in risk assessment of mAb candidates in early development

    Mechanistic Investigation of the Androgen Receptor DNA-Binding Domain and Modulation via Direct Interactions with DNA Abasic Sites: Understanding the Mechanisms Involved in Castration-Resistant Prostate Cancer

    No full text
    The androgen receptor (AR) is an important drug target in prostate cancer and a driver of castration-resistant prostate cancer (CRPC). A significant challenge in designing effective drugs lies in targeting constitutively active AR variants and, most importantly, nearly all AR variants lacking the ligand-binding domain (LBD). Recent findings show that an AR’s constitutive activity may occur in the presence of somatic DNA mutations within non-coding regions, but the role of these mutations remains elusive. The discovery of new drugs targeting CRPC is hampered by the limited molecular understanding of how AR binds mutated DNA sequences, frequently observed in prostate cancer, and how mutations within the protein and DNA regulate AR-DNA interactions. Using atomistic molecular dynamics (MD) simulations and quantum mechanical calculations, we focused our efforts on (i) rationalising the role of several activating DBD mutations linked to prostate cancer, and (ii) DBD interactions in the presence of abasic DNA lesions, which frequently occur in CRPC. Our results elucidate the role of mutations within DBD through their modulation of the intrinsic dynamics of the DBD-DNA ternary complex. Furthermore, our results indicate that the DNA apurinic lesions occurring in the androgen-responsive element (ARE) enhance direct AR-DNA interactions and stabilise the DBD homodimerisation interface. Moreover, our results strongly suggest that those abasic lesions may form reversible covalent crosslinks between DNA and lysine residues of an AR via a Schiff base. In addition to providing an atomistic model explaining how protein mutations within the AR DNA-binding domain affect AR dimerisation and AR-DNA interactions, our findings provide insight into how somatic mutations occurring in DNA non-coding regions may activate ARs. These mutations are frequently observed in prostate cancer and may contribute to disease progression by enhancing direct AR-DNA interactions

    Cyclical endometrial repair and regeneration: Molecular mechanisms, diseases, and therapeutic interventions

    No full text
    Abstract The endometrium is a unique human tissue with an extraordinary ability to undergo a hormone‐regulated cycle encompassing shedding, bleeding, scarless repair, and regeneration throughout the female reproductive cycle. The cyclical repair and regeneration of the endometrium manifest as changes in endometrial epithelialization, glandular regeneration, and vascularization. The mechanisms encompass inflammation, coagulation, and fibrinolytic system balance. However, specific conditions such as endometriosis or TCRA treatment can disrupt the process of cyclical endometrial repair and regeneration. There is uncertainty about traditional clinical treatments' efficacy and side effects, and finding new therapeutic interventions is essential. Researchers have made substantial progress in the perspective of regenerative medicine toward maintaining cyclical endometrial repair and regeneration in recent years. Such progress encompasses the integration of biomaterials, tissue‐engineered scaffolds, stem cell therapies, and 3D printing. This review analyzes the mechanisms, diseases, and interventions associated with cyclical endometrial repair and regeneration. The review discusses the advantages and disadvantages of the regenerative interventions currently employed in clinical practice. Additionally, it highlights the significant advantages of regenerative medicine in this domain. Finally, we review stem cells and biologics among the available interventions in regenerative medicine, providing insights into future therapeutic strategies
    corecore