12 research outputs found

    Instability of Alien Chromosome Introgressions in Wheat Associated with Improper Positioning in the Nucleus

    Get PDF
    Alien introgressions introduce beneficial alleles into existing crops and hence, are widely used in plant breeding. Generally, introgressed alien chromosomes show reduced meiotic pairing relative to the host genome, and may be eliminated over generations. Reduced pairing appears to result from a failure of some telomeres of alien chromosomes to incorporate into the leptotene bouquet at the onset of meiosis, thereby preventing chiasmate pairing. In this study, we analysed somatic nuclei of rye introgressions in wheat using 3D-FISH and found that while introgressed rye chromosomes or chromosome arms occupied discrete positions in the Rabl’s orientation similar to chromosomes of the wheat host, their telomeres frequently occupied positions away from the nuclear periphery. The frequencies of such abnormal telomere positioning were similar to the frequencies of out-of-bouquet telomere positioning at leptotene, and of pairing failure at metaphase I. This study indicates that improper positioning of alien chromosomes that leads to reduced pairing is not a strictly meiotic event but rather a consequence of a more systemic problem. Improper positioning in the nuclei probably impacts the ability of introgressed chromosomes to migrate into the telomere bouquet at the onset of meiosis, preventing synapsis and chiasma establishment, and leading to their gradual elimination over generations

    Introgression of Powdery Mildew Resistance Gene Pm56 on Rye Chromosome Arm 6RS Into Wheat

    Get PDF
    Powdery mildew, caused by the fungus Blumeria graminis f. sp. tritici, represents a yield constraint in many parts of the world. Here, the introduction of a resistance gene carried by the cereal rye cv. Qinling chromosome 6R was transferred into wheat in the form of spontaneous balanced translocation induced in plants doubly monosomic for chromosomes 6R and 6A. The translocation, along with other structural variants, was detected using in situ hybridization and genetic markers. The differential disease response of plants harboring various fragments of 6R indicated that a powdery mildew resistance gene(s) was present on both arms of rye chromosome 6R. Based on karyotyping, the short arm gene, designated Pm56, was mapped to the subtelomere region of the arm. The Robertsonian translocation 6ALâ‹…6RS can be exploited by wheat breeders as a novel resistance resource

    Table_1_Introgression of Powdery Mildew Resistance Gene Pm56 on Rye Chromosome Arm 6RS Into Wheat.xlsx

    No full text
    <p>Powdery mildew, caused by the fungus Blumeria graminis f. sp. tritici, represents a yield constraint in many parts of the world. Here, the introduction of a resistance gene carried by the cereal rye cv. Qinling chromosome 6R was transferred into wheat in the form of spontaneous balanced translocation induced in plants doubly monosomic for chromosomes 6R and 6A. The translocation, along with other structural variants, was detected using in situ hybridization and genetic markers. The differential disease response of plants harboring various fragments of 6R indicated that a powdery mildew resistance gene(s) was present on both arms of rye chromosome 6R. Based on karyotyping, the short arm gene, designated Pm56, was mapped to the subtelomere region of the arm. The Robertsonian translocation 6ALâ‹…6RS can be exploited by wheat breeders as a novel resistance resource.</p

    The KL system in wheat permits homoeologous crossing over between closely related chromosomes

    No full text
    The Chinese wheat landrace Kaixianluohanmai (KL) expresses the ph-like phenotype. A major QTL, QPh.sicau-3A (syn. phKL), responsible for this effect has been mapped to chromosome arm 3AL. This study presents some characteristics of homoeologous pairing and recombination induced by phKL. In KL haploids, the level of homoeologous pairing was elevated relative to Ph1 Chinese Spring (CS) haploids. There was a clear preference for A–D pairing and less frequent for A–B and B–D, reflecting the higher levels of affinity between genomes A and D in wheat. The characteristics of pairing were affected by temperature and magnesium ion supplementation. The suitability of phKL for chromosome engineering was tested on three pairs of homoeologues: 2Sv-2B, 2Sv-2D, and 2RL-2BL. The recombination rates were 1.68%, 0.17%, and 0%, respectively. The phKL locus in KL induced a moderate level of homoeologous chromosome pairing and recombination when the Ph1 locus of wheat was present, both in wheat haploids and hexaploids. The Ph1-imposed criteria for chromosome pairing and crossing over were relaxed to some degree, permitting homoeologous crossing over but only between closely related chromosomes; there was no crossing over between more differentiated chromosomes. Therefore, the phKL system (QPh.sicau-3A) can be a useful tool in chromosome engineering of wheat to transfer genes from closely related species with the benefit of reduced genomic chaos generated by the ph1b mutation
    corecore