707 research outputs found
A UAV-Aided Real-Time Channel Sounder for Highly Dynamic Nonstationary A2G Scenarios
With the rapid development and broad applications of unmanned aerial vehicle (UAV)-based wireless stations in the sky, fundamental understanding and characterization of the realistic air-to-ground (A2G) communication link properties are crucial. In this article, a UAV-aided channel sounder with a real-time processing hardware system is developed for highly dynamic and nonstationary A2G channel measurements. In the hardware system, a global positioning system (GPS)-based triggering signal is designed, the equivalent antenna pattern affected by the UAV airframe is considered, and an appropriate sounding signal is selected, to improve the accuracy of measured channel impulse response (CIR). Moreover, real-time hardware processing algorithms for raw channel data, that is, CIR extraction, system response elimination (SRE), power loss recovery (PLR), and adaptive multipath component (MPC) recognition are developed and implemented on a single field-programmable gate array (FPGA) chip. In this way, the required storage size of channel data and the processing time for one slice of CIR is greatly decreased, which can meet the requirement of nonstationary A2G channel measurement with a high sampling rate and long-time measurement. A commercial channel emulator is used to reproduce controllable channels and verify the performance of the developed channel sounder. Finally, the developed channel sounder is applied to carry out A2G measurement campaigns at 3.5 GHz in a campus scenario. The channel characteristics, that is, path loss (PL), K -factor, and path angle are analyzed. The measured channel characteristics are consistent with existing measurements under a similar scenario. The estimated path angles are also validated by the theoretical results. Thus, the channel sounder can be used to capture the nonstationary A2G channel characteristics for the system design and algorithm optimization of A2G communications.</p
Adsorption of Line Segments on a Square Lattice
We study the deposition of line segments on a two-dimensional square lattice.
The estimates for the coverage at jamming obtained by Monte-Carlo simulations
and by -order time-series expansion are successfully compared. The
non-trivial limit of adsorption of infinitely long segments is studied, and the
lattice coverage is consistently obtained using these two approaches.Comment: 19 pages in Latex+5 postscript files sent upon request ; PTB93_
Task-Oriented Conversational Behavior of Agents for Collaboration in Human-Agent Teamwork
International audienceCoordination is an essential ingredient for human-agent teamwork. It requires team members to share knowledge to establish common grounding and mutual awareness among them. This paper proposes a be-havioral architecture C 2 BDI that enhances the knowledge sharing using natural language communication between team members. Collaborative conversation protocols and resource allocation mechanism have been defined that provide proactive behavior to agents for coordination. This architecture has been applied to a real scenario in a collaborative virtual environment for learning. The solution enables users to coordinate with other team members
Recommended from our members
Distribution of COL8A2 and COL8A1 gene variants in Caucasian primary open angle glaucoma patients with thin central corneal thickness
Purpose: One approach to identify genes that contribute to common complex ocular disorders such as primary open angle glaucoma (POAG) is to study the genetic determinates of endophenotypes that are defined by underlying pre-disposing heritable quantitative traits such as central corneal thickness (CCT). Collagen VIII is a major component of Descemet’s membrane and studies in mice have indicated that targeted inactivation of the genes encoding the collagen type 8 alpha1 (Col8a1) and collagen type 8 alpha2 (Col8a2) subunits (COL8A1 and COL8A2) results in thinning of the corneal stroma and of Descemet’s membrane. The purpose of this study is to evaluate COL8A1 and COL8A2 as candidate genes for thin CCT in human POAG patients. Methods: 100 Caucasian POAG patients were enrolled in this study. The entire COL8A1 and COL8A2 coding sequence was determined in 8 patients with CCT586 µm (one standard deviation above the mean). Selected COL8A2 exons containing variants of interest were sequenced in the full POAG cohort. Association and quantitative trait analyses were performed. Results: Three patients with CCT less than 513 µm and advanced POAG were found to have missense changes in COL8A2; two patients had a previously identified mutation, R155Q and one had a novel change, P678L (p=0.0035, Fisher’s exact test). Missense changes were not found in any of the patients with CCT>513 µm and missense changes in the COL8A1 gene were not found in any patient. One common COL8A2 SNP, rs274754 was also statistically associated with CCT (p=0.018). Conclusions: In this study we have identified COL8A2 missense changes in a group of Caucasian patients with very thin CCT and advanced POAG. These results suggest that DNA sequence variants in the COL8A2 gene may be associated with thin corneas in some glaucoma patients. Further study of COL8A2 variants in other patient populations, especially those with thinner CCT such as African-Americans would provide further support for a role of COL8A2 in corneal thickness and in glaucoma
Deflection and Rotation of CMEs from Active Region 11158
Between the 13 and 16 of February 2011 a series of coronal mass ejections
(CMEs) erupted from multiple polarity inversion lines within active region
11158. For seven of these CMEs we use the Graduated Cylindrical Shell (GCS)
flux rope model to determine the CME trajectory using both Solar Terrestrial
Relations Observatory (STEREO) extreme ultraviolet (EUV) and coronagraph
images. We then use the Forecasting a CME's Altered Trajectory (ForeCAT) model
for nonradial CME dynamics driven by magnetic forces, to simulate the
deflection and rotation of the seven CMEs. We find good agreement between the
ForeCAT results and the reconstructed CME positions and orientations. The CME
deflections range in magnitude between 10 degrees and 30 degrees. All CMEs
deflect to the north but we find variations in the direction of the
longitudinal deflection. The rotations range between 5\mydeg and 50\mydeg with
both clockwise and counterclockwise rotations occurring. Three of the CMEs
begin with initial positions within 2 degrees of one another. These three CMEs
all deflect primarily northward, with some minor eastward deflection, and
rotate counterclockwise. Their final positions and orientations, however,
respectively differ by 20 degrees and 30 degrees. This variation in deflection
and rotation results from differences in the CME expansion and radial
propagation close to the Sun, as well as the CME mass. Ultimately, only one of
these seven CMEs yielded discernible in situ signatures near Earth, despite the
active region facing near Earth throughout the eruptions. We suggest that the
differences in the deflection and rotation of the CMEs can explain whether each
CME impacted or missed the Earth.Comment: 18 pages, 6 figures, accepted in Solar Physic
4pi Models of CMEs and ICMEs
Coronal mass ejections (CMEs), which dynamically connect the solar surface to
the far reaches of interplanetary space, represent a major anifestation of
solar activity. They are not only of principal interest but also play a pivotal
role in the context of space weather predictions. The steady improvement of
both numerical methods and computational resources during recent years has
allowed for the creation of increasingly realistic models of interplanetary
CMEs (ICMEs), which can now be compared to high-quality observational data from
various space-bound missions. This review discusses existing models of CMEs,
characterizing them by scientific aim and scope, CME initiation method, and
physical effects included, thereby stressing the importance of fully 3-D
('4pi') spatial coverage.Comment: 14 pages plus references. Comments welcome. Accepted for publication
in Solar Physics (SUN-360 topical issue
A Parametric Study of Erupting Flux Rope Rotation. Modeling the "Cartwheel CME" on 9 April 2008
The rotation of erupting filaments in the solar corona is addressed through a
parametric simulation study of unstable, rotating flux ropes in bipolar
force-free initial equilibrium. The Lorentz force due to the external shear
field component and the relaxation of tension in the twisted field are the
major contributors to the rotation in this model, while reconnection with the
ambient field is of minor importance. Both major mechanisms writhe the flux
rope axis, converting part of the initial twist helicity, and produce rotation
profiles which, to a large part, are very similar in a range of shear-twist
combinations. A difference lies in the tendency of twist-driven rotation to
saturate at lower heights than shear-driven rotation. For parameters
characteristic of the source regions of erupting filaments and coronal mass
ejections, the shear field is found to be the dominant origin of rotations in
the corona and to be required if the rotation reaches angles of order 90
degrees and higher; it dominates even if the twist exceeds the threshold of the
helical kink instability. The contributions by shear and twist to the total
rotation can be disentangled in the analysis of observations if the rotation
and rise profiles are simultaneously compared with model calculations. The
resulting twist estimate allows one to judge whether the helical kink
instability occurred. This is demonstrated for the erupting prominence in the
"Cartwheel CME" on 9 April 2008, which has shown a rotation of \approx 115
degrees up to a height of 1.5 R_sun above the photosphere. Out of a range of
initial equilibria which include strongly kink-unstable (twist Phi=5pi), weakly
kink-unstable (Phi=3.5pi), and kink-stable (Phi=2.5pi) configurations, only the
evolution of the weakly kink-unstable flux rope matches the observations in
their entirety.Comment: Solar Physics, submitte
Partially ionizing the universe by decaying particles
We show that UV photons produced by decaying particles can partially reionize
the universe and explain the large optical depth observed by Wilkinson
Microwave Anisotropy Probe. Together with UV fluxes from early formed stars and
quasars, it is possible that the universe is fully ionized at z \lesssim 6 and
partially ionized at z \gtrsim 6 as observed by Sloan Digital Sky Survey for
large parameter space of the decaying particle. This scenario will be
discriminated by future observations, especially by the EE polarization power
spectrum of cosmic microwave background radiation.Comment: 5 pages, 6 postscript figures include
AltitudeOmics: The Integrative Physiology of Human Acclimatization to Hypobaric Hypoxia and Its Retention upon Reascent.
An understanding of human responses to hypoxia is important for the health of millions of people worldwide who visit, live, or work in the hypoxic environment encountered at high altitudes. In spite of dozens of studies over the last 100 years, the basic mechanisms controlling acclimatization to hypoxia remain largely unknown. The AltitudeOmics project aimed to bridge this gap. Our goals were 1) to describe a phenotype for successful acclimatization and assess its retention and 2) use these findings as a foundation for companion mechanistic studies. Our approach was to characterize acclimatization by measuring changes in arterial oxygenation and hemoglobin concentration [Hb], acute mountain sickness (AMS), cognitive function, and exercise performance in 21 subjects as they acclimatized to 5260 m over 16 days. We then focused on the retention of acclimatization by having subjects reascend to 5260 m after either 7 (n = 14) or 21 (n = 7) days at 1525 m. At 16 days at 5260 m we observed: 1) increases in arterial oxygenation and [Hb] (compared to acute hypoxia: PaO2 rose 9±4 mmHg to 45±4 while PaCO2 dropped a further 6±3 mmHg to 21±3, and [Hb] rose 1.8±0.7 g/dL to 16±2 g/dL; 2) no AMS; 3) improved cognitive function; and 4) improved exercise performance by 8±8% (all changes p<0.01). Upon reascent, we observed retention of arterial oxygenation but not [Hb], protection from AMS, retention of exercise performance, less retention of cognitive function; and noted that some of these effects lasted for 21 days. Taken together, these findings reveal new information about retention of acclimatization, and can be used as a physiological foundation to explore the molecular mechanisms of acclimatization and its retention
Active Galactic Nuclei at the Crossroads of Astrophysics
Over the last five decades, AGN studies have produced a number of spectacular
examples of synergies and multifaceted approaches in astrophysics. The field of
AGN research now spans the entire spectral range and covers more than twelve
orders of magnitude in the spatial and temporal domains. The next generation of
astrophysical facilities will open up new possibilities for AGN studies,
especially in the areas of high-resolution and high-fidelity imaging and
spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These
studies will address in detail a number of critical issues in AGN research such
as processes in the immediate vicinity of supermassive black holes, physical
conditions of broad-line and narrow-line regions, formation and evolution of
accretion disks and relativistic outflows, and the connection between nuclear
activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic
Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical
Symposia Serie
- …