181 research outputs found

    Comparing different realizations of modified Newtonian dynamics: virial theorem and elliptical shells

    Get PDF
    There exists several modified gravity theories designed to reproduce the empirical Milgrom's formula (MOND). Here we derive analytical results in the context of the static weak-field limit of two of them (BIMOND, leading for a given set of parameters to QUMOND, and TeVeS). In this limit, these theories are constructed to give the same force field for spherical symmetry, but their predictions generally differ out of it. However, for certain realizations of these theories (characterized by specific choices for their free functions), the binding potential-energy of a system is increased, compared to its Newtonian counterpart, by a constant amount independent of the shape and size of the system. In that case, the virial theorem is exactly the same in these two theories, for the whole gravity regime and even outside of spherical symmetry, although the exact force fields are different. We explicitly show this for the force field generated by the two theories inside an elliptical shell. For more general free functions, the virial theorems are however not identical in these two theories. We finally explore the consequences of these analytical results for the two-body force.Comment: 4 pages, 1 figure, accepted for publication as a Brief Report in Physical Review

    Modelling the Galactic disc: perturbed distribution functions in the presence of spiral arms

    Full text link
    Starting from an axisymmetric equilibrium distribution function (DF) in action space, representing a Milky Way thin disc stellar population, we use the linearized Boltzmann equation to explicitly compute the response to a three-dimensional spiral potential in terms of the perturbed DF. This DF, valid away from the main resonances, allows us to investigate a snapshot of the velocity distribution at any given point in three-dimensional configuration space. Moreover, the first order moments of the DF give rise to non-zero radial and vertical bulk flows -- namely breathing modes -- qualitatively similar to those recently observed in the extended Solar neighbourhood. We show that these analytically predicted mean stellar motions are in agreement with the outcome of test-particle simulations. Moreover, we estimate for the first time the reduction factor for the vertical bulk motions of a stellar population compared to the case of a cold fluid. Such an explicit expression for the full perturbed DF of a thin disc stellar population in the presence of spiral arms will be helpful in order to dynamically interpret the detailed information on the Milky Way disc stellar kinematics that will be provided by upcoming large astrometric and spectroscopic surveys of the Galaxy.Comment: 15 pages. Submitted on 2 December 2015 to MNRAS. Accepted for publication. Some typos corrected in v
    • …
    corecore