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There exists several modified gravity theories designed to reproduce the empirical Milgrom’s
formula (MOND). Here we derive analytical results in the context of the static weak-field limit of
two of them (BIMOND, leading for a given set of parameters to QUMOND, and TeVeS). In this
limit, these theories are constructed to give the same force field for spherical symmetry, but their
predictions generally differ out of it. However, for certain realizations of these theories (characterized
by specific choices for their free functions), the binding potential-energy of a system is increased,
compared to its Newtonian counterpart, by a constant amount independent of the shape and size of
the system. In that case, the virial theorem is exactly the same in these two theories, for the whole
gravity regime and even outside of spherical symmetry, although the exact force fields are different.
We explicitly show this for the force field generated by the two theories inside an elliptical shell.
For more general free functions, the virial theorems are however not identical in these two theories.
We finally explore the consequences of these analytical results for the two-body force.

PACS numbers: 98.10.+z, 98.62.Dm, 95.35.+d, 95.30.Sf

I. INTRODUCTION

The current dominant paradigm is that galaxies are
embedded in halos of cold dark matter. However, one
observes that for gravitational accelerations below a0 ∼
10−10 ms−2, the total gravitational attraction g in galaxy
disks approaches (gNa0)

1/2 where gN is the usual Newto-
nian gravitational field as calculated from the observed
distribution of baryonic matter. The successes of this
recipe in galaxies could be an emergent phenomenon,
linked with the complex feedback between baryons and
cold dark matter, but a more radical explanation of these
successes is a modification of gravity on galaxy scales:
this paradigm is known as modified Newtonian dynam-
ics [MOND, 1]. More precisely, within this paradigm,
the Newtonian acceleration ~gN produced by the visible
matter is linked to the true gravitational acceleration ~g
by means of an interpolating function µ(x):

µ (g/a0)~g = ~gN , (1)

where µ(x) ∼ x for x ≪ 1 and µ(x) ∼ 1 for x ≫ 1 (and
g = |~g|), or equivalently by means of an interpolating
function ν(y):

~g = ν (gN/a0)~gN , (2)

where ν(y) ∼ y−1/2 for y ≪ 1 and ν(y) ∼ 1 for y ≫ 1.
However, these expressions cannot be exact outside of
spherical symmetry, since they do not respect usual con-
servation laws. There exists various flavors of modified
gravity theories reproducing this relation in spherical
symmetry, but all making slightly different predictions
outside of it.
For instance, in the Newtonian static weak-field limit

of the generalized Einstein-Aether theories[2–4], the

gravitational potential Φ obeys the following modified
Poisson equation[5]:

∇ · [µ(|∇Φ|/a0)∇Φ] = 4πGρ. (3)

On the other hand, in Bekenstein’s Tensor-Vector-Scalar
(TeVeS) multifield theory[6], the gravitational potential
in the static weak-field limit can be expressed as:

Φ = ΦN + φ, (4)

where ΦN is the Newtonian potential obeying the usual
Poisson equation, and φ is a scalar field obeying an equa-
tion similar to Eq. (3), but with a different µ-function
[see, e.g., 7], which can simply be, at least far from the
strongest gravity regime, µ(x) = x. Finally, another pos-
sibility to recover Eqs. (1) and (2) in the spherically sym-
metric static weak-field limit is the new BIMOND theory
[8, 9] where we can have Φ = ΦN +φ, as in Eq. (4), with
φ obeying [see also QUMOND, 10]:

∇2φ = ∇ · [ν(|∇ΦN |/a0)∇ΦN ] , (5)

where, e.g., ν(y) = y−1/2 far away from the strongest
gravity regime.
Here, we intend to compare these various implementa-

tions of the MOND paradigm at the purely theoretical
level, in the same philosophy as [11, 12]. A useful way
to compare the theoretical implications of these various
theoretical frameworks is to compare the virial theorem
ensuing from them. Indeed, the virial theorem is a very
useful tool, e.g. to compute the 2-body forces in these
theories. The scalar form of the virial theorem has been
computed for Eq.(3) in the deep-MOND limit by [13, 14]
and in the deep-QUMOND case [10]. Hereafter, we ex-
tend this study to the whole intermediate regime (not
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only deep-MOND) in the BIMOND and TeVeS frame-
works, and show that for peculiar choices of the µ and ν
functions, the scalar form of the virial theorem is identi-
cal in these two theories and independent of the size and
shape of the system (Sect. II), although the exact force
fields are different. We explicitly show how the force
fields differ in the case of a test particle sitting inside an
elliptical shell of matter (Sect. III). We also explore the
consequences for the 2-body force (Sect. IV).

II. VIRIAL THEOREM

A time-independent system in any gravitational theory
satisfies the tensor virial theorem:

2Kjk +Wjk = 0, (6)

where Kjk = 1/2
∫

ρ〈vjvk〉d3r is the kinetic-energy ten-
sor (ρ being the density and vj being the j-th compo-
nent of the velocity) and Wjk =

∫

ρrjgkd
3r is the Chan-

drasekhar potential-energy tensor (where rj the j-th com-
ponent of the position and gk is the k-th component of the
gravitational force). The form of this potential-energy
tensor depends on the gravitational theory through gk,
and we explore herafter its form in the BIMOND and
TeVeS frameworks. The trace of this tensor equation
yields the scalar virial theorem.

A. BIMOND

In the non-relativistic quasi-static weak field limit of
BIMOND, and for a given set of parameters, the grav-
itational potential Φ obeys [see Eq.54 of 8] ∇2Φ =
4πGρ + ∇ · [ν(|∇ΦN |/a0)∇ΦN ]. This means that the
potential Φ can be divided into a Newtonian and a quasi-
linear MOND (QUMOND) part as in Eqs. (4) and (5),
and that in the potential-energy tensor, each gk can be
decomposed into a Newtonian part and a QUMOND part
gk = gNk

+ gQk
, so that the scalar virial theorem ensuing

from the trace of Eq. (6) writes, for the whole gravity
regime, 2K +WN +WQ = 0.

In order to recover the asymptotic form ν ∼
√

a0/gN
for gN ≪ a0 in Eq. (2) for the total force (New-
ton+QUMOND) in the spherical BIMOND case, the
(different) ν-function of the modified Poisson equation
(Eq. 5) must also have the asymptotic form ν(y) = y−1/2

(where y = gN/a0) for r → ∞. Then, as shown by Mil-
grom [10], we have

−WQ =
2

3
(GM3a0)

1/2 +

∫

Zβd3r, (7)

Z(ν−1) ≡ ν~gN (r) · ~gN (r)

8πG
, β ≡ Z−1

∫ Z

0

dZ

[

d ln(Zν3)

d lnZ

]

where Z and β are functions of ν−1, Z is an energy den-
sity, and β is a dimensionless number depending on noth-
ing except on the shape of the ν-function.

B. TeVeS

Generally speaking, for a curl-free vector ~s =
(s1, s2, s3), a function F = F (s2) (where s ≡ |~s|), and
an arbitrary vector ~u = (u1, u2, u3), we have the follow-
ing identity:

(sjuj)S = ∂i

[

F ′sisjuj −
Fui

2

]

(8)

+

[

(∂juj)F

2
− F ′sjsi

∂iuj + ∂jui

2

]

.

where S ≡ ∂i(F
′si), and where we adopted the notation

of implicitly summing over common indexes i or j =
1, 2, 3, and we used the fact that ∂isj = ∂jsi because of
curl-freeness. Integrating over the entire 3D volume, the
first term on the rhs becomes a surface integral through
the divergence theorem.

Now, for a TeVeS-like multifield theory, the static
weak-field gravitational potential can be separated into
a Newtonian part ΦN and a scalar field MONDian part
φ, as in Eq. (4). This makes it similar to BIMOND and
different from the classical MONDian potential that fully
obeys an Equation like Eq. (2). Again, in the potential-
energy tensor, each gk can be decomposed, so that the
virial theorem of Eq. (6) becomes 2Kjk+WNjk

+Wsjk =

0, where Wsjk = −
∫

ρrj ∂kφd3r. We can now identify
in the above identity (Eq. 8), ~s = −∇φ/a0, F

′ = µ, S =
−4πGρ/a0, where φ is the scalar field of Eq. (4), ρ is the
matter volume density, whose integration over the whole
volume is the massM , and µ is the interpolating function
of Eq. (3), which the scalar field φ obeys.

Let now u be a constant vector ~u = (1, 0, 0), then inte-
grating Eq. (8) gives the total scalar force’s 1-component

over the system (a20/4πG)
∫

[

F ′~s · d ~As1 − (F/2)dA1

]

.

On the other hand, let u be a divergence free field ~u =
(0,−r3, r2), then Eq. (8) gives the total scalar torque’s 1-
component over the system (or the rate of change of the
angular momentum along the 1-axis due to the scalar

field), a20/4πG
∫

[

F ′~s · d ~A(r2s3 − r3s2)
]

. Also, adopting

~u = ~s and ~u = µ~s we obtain the following “theorems” for
the scalar field

s2 =
1

M

∫

dr3ρeffF (9)

2s2F ′ − F =
1

M

∫

dr3ρeff(F
′s)2,

where ρeff is the effective density of matter that would
have sourced the scalar field in Newtonian gravity. These
formulae, valid in any geometry and for any µ (and F )
functions, are useful for checking the self-consistency of a
numerically computed ρeff and the corresponding MON-
Dian field s.

Finally, if ~u is a vector ~u = (r1, 0, 0), then Eq. (8)
gives the (1,1)-component of the Chandrasekhar poten-
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tial energy-tensor Ws11 of the scalar field in the system

−4πG

a20
Ws11 = (10)

∫
[

(~s · d ~A)r1s1F
′ − Fr1dA1

2

]

+

∫

d3r

[

F

2
− F ′s1s1

]

.

The sumWs11+Ws22+Ws33 then leads to the scalar virial
theorem in the quasi-static weak-field limit of TeVeS,
2K + WN + Ws = 0, where, similarly to BIMOND,
Ws = Ws∞ + Wsµ , Ws∞ corresponding to the sum of
the first terms of the rhs of Eq. (10) (taken as a surface
integral at infinity), and Wsµ corresponding to the sum
of the second terms of the rhs of Eq. (10):

−Wsµ =

∫

Zβd3r, Z(µ) ≡ µ~gs(r) · ~gs(r)
8πG

. (11)

In order to recover the asymptotic form µ ∼ g/a0 for
g ≪ a0 in Eq. (1) for the spherical case in TeVeS, the (dif-
ferent) µ-function of the modified Poisson Eq. (3) obeyed
by the scalar field must always have the asymptotic form
F ′ = µ(s) = s for s ≪ 1 (and F (z) = (2/3)z3/2 where
z = s2) [see Eq.27 in 7]. The surface integral Ws∞ thus
becomes a constant because of this asymptotic behavior
at infinity [see 13] −Ws∞ = 2

3
(GM3a0)

1/2. Quite re-
markably, this result combined with Eq. (7) and Eq. (10)
directly shows that, if ν = µ−1, and if gN = µgs (i.e.
in spherical symmetry), the virial theorems are precisely
identical in the two theories TeVeS and BIMOND. This
was to be expected since they were constructed to give
the same result for the total force field in spherical sym-
metry. Outside of spherical symmetry, gN 6= µgs and the
virial theorems are thus different.
Let us note that for such an asymptotic behaviour of

the µ-function (and F -function), the total scalar force’s
1-component (see the paragraph before Eq. 9) is zero,
and the momentum along the 1-axis (and along the other
axes) of the system is conserved. Similarly, the cancella-
tion of the total scalar torque for this asymptotic behav-
ior of F implies that the total angular momentum along
each axis is also conserved.

C. A special case

Besides this asymptotic behaviour of the µ-function for
s ≪ 1, there are many different forms of the µ-function
for the scalar field in the intermediate to strong grav-
ity regime, like e.g. µ → ∞ for s → 1 [see 7]. In BI-
MOND, different forms of ν = µ−1 are thus also possible.
However, a possibility is to choose µ(s) = s everywhere
[6], which, at least for the intermediate gravity regime of
galaxies and galaxy clusters, can fit observations [7] (with
an additional dark matter component in galaxy clusters
[15]). In BIMOND, this corresponds to ν(y) = y−1/2.
In this special case, the volume integral of Eq. (7)

goes to zero since gN ∼ ν−2 and Z ∼ ν−3, meaning
that β = 0. In TeVeS, the volume integral Wsµ (see

Eq. 10 and after) also cancels since Z ∼ µ3, and β is
also zero since µ = ν−1. This remarkable result, corre-
sponding to the deep-MOND result of Milgrom [10, 13],
means that, for this choice of the µ and ν functions,
independently of the size and shape of the system, the
potential-energy of any system becomes more negative,
compared to its Newtonian counterpart, by a constant
amount −(2/3)

√
GM3a0, both in BIMOND and TeVeS.

However, in this special case, while the total potential
energies and virial theorems have the remarkable prop-
erty of being identical in the two theories, the exact force
fields are still different. We explicitly show this in the
next section in the case of elliptical shells.

III. ELLIPTICAL SHELLS

The above specific choice of µ and ν functions, for
which the total potential energy of any system is identical
in TeVeS and BIMOND, corresponds to a force field that
can be separated into, on one hand, a Newtonian part,
and, on the other hand, a “deep-MOND” or a “deep-
QUMOND” part, respectively. In order to compare the
force fields generated by these two implementations of
the theories, we can thus concentrate on the differences
between the predictions of MOND and QUMOND in the
deep-MOND and deep-QUMOND regimes.
An interesting way of comparing the deep-MOND and

deep-QUMOND predictions is to consider, for a system
in a low gravity regime, the effective density of mat-
ter ρeff that would have sourced the force field in New-

tonian gravity: ρMOND
eff ≡ (1/4πG)∇2Φ, ρQUMOND

eff ≡
(1/4πG)∇.(ν∇ΦN ). In TeVeS and BIMOND, this addi-
tional gravity can be attributed to what observers would
call “dark matter”, and the above effective matter den-
sity is called “phantom dark matter” density [16, 17].
Let us now concentrate on the theoretical case of a

system with all its mass in an elliptical shell. The New-
tonian prediction is that the gravity is uniformly zero in
the void inside the shell, hence ν∇ΦN is constant (zero),

and QUMOND predicts ρQUMOND
eff = 0

In the case of classical MOND, however, this is not the
case. An example is shown in Fig. 1. We consider a den-
sity model with the baryonic profile ρb = 0 for a < 1 and

ρb = a−4(1 − a−1)2 for a ≥ 1, where a2 ≡ R2 + z2

q2 and

q = 0.7. We then use a modified Poisson solver to solve
Eq. 3 for µ(x) = x. We then compute the effective matter
volume density contours in the Rz-plane (shaded areas
on Fig. 1). It is clearly non-zero inside the shell, mean-
ing that, even though the total potential energy of the
system is the same in deep-MOND and deep-QUMOND,
the force fields are different. In fact, the predictions of
the two theories can be decomposed into their prediction
in spherical symmetry (that are the same by construc-
tion) and a curl-field: it is this curl-field which differs in
MOND and QUMOND.
In general, the QUMOND effective density is more in-

tuitively related to the Newtonian gravity than in clas-
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FIG. 1: Effective density predicted by (deep-)MOND inside
an elliptical shell (see Sect. III; the baryonic density is zero
inside the dot-dashed line). The contours are for |r2ρeff | = 0
(black) to |r2ρeff | = 10−3 (white) in steps of 10−4. The dark
band in the middle indicates zero density, the upper grey
areas have negative densities, and the lower ones positive.
In QUMOND, this effective density is zero inside the shell.

sical MOND. For instance, in QUMOND, whenever the
Newtonian gravity is locally a central force field, the ef-
fective density in that region is locally spherical (this is
however not true for a system plunged into a uniform ex-
ternal force field, except if the internal Newtonian gravity
is also uniform in the region of interest).

IV. CONCLUSION AND DISCUSSION

We conclude that, in general, the TeVeS and BIMOND
force fields and virial theorems are different, except in
spherical symmetry (with ν = µ−1). However, for a
specific choice of the µ and ν = µ−1 functions (obser-
vationally only valid in the intermediate gravity regime),
the virial theorems are identical even outside of spheri-
cal symmetry. What is more, the potential energy of the
system can then be expressed analytically, for the whole
gravity regime, as a sum of the Newtonian potential en-
ergy and of a constant term proportional to the 3/2 power
of the total mass of the system. However, while the virial

theorems are then identical, the exact force fields are still
different (i.e. the gravities have different curl-fields), as
we showed in the case of elliptical shells.

In this specific case, we can also get an analytic ex-
pression for the 2-body force under the approximation
that the two bodies are very far apart compared to
their internal sizes [see also 13]. Since 2K + WN −
(2/3)

√
GM3a0 = 0, since the kinetic energy can be sepa-

rated into the orbital energyKorb = M1M2v
2
rel/(2M) and

the internal energy of the bodies Kint = −Σ(1/2)WNi
+

Σ(1/3)
√

GM3
i a0, and since the Newtonian potential en-

ergy can be separated into the interaction term (the mu-
tual potential energy) and the internal Newtonian poten-
tial energies of the bodies ΣWNi

, we get:

M1M2v
2
rel

M
=

GM1M2

r12
+
2

3

[

(GM3a0)
1/2 −

∑

i

(GM3
i a0)

1/2

]

.

(12)
We can then assume an approximately circular velocity
such that the 2-body force can be written

~F12 = M1 ~a1 =
M1M2v

2
rel~r12

Mr212
=

GM1M2~r12
r312

(13)

+
2

3

[

1−
i=2
∑

i=1

(

Mi

M

)3/2
]

(GM3a0)
1/2~r12

r212
.

For this specific choice of free function, the TeVeS and
BIMOND 2-body forces are thus the same, provided the
two bodies are very small compared to their mutual dis-
tance, but if they are not, the force will be different since
we showed that the force fields are different in general.
As a final remark, let us stress that this 2-body force
depends on the mass ratio of the binary, meaning that
the orbital period of an equal-mass binary would differ
from that of a binary of extreme ratio but with the same
total mass and separations, which could cause stars to
segregate according to their masses.
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