6 research outputs found

    Effect of an Aerosol Box on Intubation in Simulated Emergency Department Airways: A Randomized Crossover Study

    Get PDF
    Introduction: The use of transparent plastic aerosol boxes as protective barriers during endotracheal intubation has been advocated during the severe acute respiratory syndrome coronavirus 2 pandemic. There is evidence of worldwide distribution of such devices, but some experts have warned of possible negative impacts of their use. The objective of this study was to measure the effect of an aerosol box on intubation performance across a variety of simulated difficult airway scenarios in the emergency department. Methods: This was a randomized, crossover design study. Participants were randomized to intubate one of five airway scenarios with and without an aerosol box in place, with randomization of intubation sequence. The primary outcome was time to intubation. Secondary outcomes included number of intubation attempts, Cormack-Lehane view, percent of glottic opening, and resident physician perception of intubation difficulty. Results: Forty-eight residents performed 96 intubations. Time to intubation was significantly longer with box use than without (mean 17 seconds [range 6-68 seconds] vs mean 10 seconds [range 5-40 seconds], p <0.001). Participants perceived intubation as being significantly more difficult with the aerosol box. There were no significant differences in the number of attempts or quality of view obtained. Conclusion: Use of an aerosol box during difficult endotracheal intubation increases the time to intubation and perceived difficulty across a range of simulated ED patients

    National preparedness survey of pediatric intensive care units with simulation centers during the coronavirus pandemic

    Get PDF
    Background: The coronavirus disease pandemic caught many pediatric hospitals unprepared and has forced pediatric healthcare systems to scramble as they examine and plan for the optimal allocation of medical resources for the highest priority patients. There is limited data describing pediatric intensive care unit (PICU) preparedness and their health worker protections. Aim: To describe the current coronavirus disease 2019 (COVID-19) preparedness efforts among a set of PICUs within a simulation-based network nationwide. Methods: A cross-sectional multi-center national survey of PICU medical director(s) from children's hospitals across the United States. The questionnaire was developed and reviewed by physicians with expertise in pediatric critical care, disaster readiness, human factors, and survey development. Thirty-five children's hospitals were identified for recruitment through a long-established national research network. The questions focused on six themes: (1) PICU and medical director demographics; (2) Pediatric patient flow during the pandemic; (3) Changes to the staffing models related to the pandemic; (4) Use of personal protective equipment (PPE); (5) Changes in clinical practice and innovations; and (6) Current modalities of training including simulation. Results: We report on survey responses from 22 of 35 PICUs (63%). The majority of PICUs were located within children's hospitals (87%). All PICUs cared for pediatric patients with COVID-19 at the time of the survey. The majority of PICUs (83.4%) witnessed decreases in non-COVID-19 patients, 43% had COVID-19 dedicated units, and 74.6% pivoted to accept adult COVID-19 patients. All PICUs implemented changes to their staffing models with the most common changes being changes in COVID-19 patient room assignment in 50% of surveyed PICUs and introducing remote patient monitoring in 36% of the PICU units. Ninety-five percent of PICUs conducted training for donning and doffing of enhanced PPE. Even 6 months into the pandemic, one-third of PICUs across the United States reported shortages in PPE. The most common training formats for PPE were hands-on training (73%) and video-based content (82%). The most common concerns related to COVID-19 practice were changes in clinical protocols and guidelines (50%). The majority of PICUs implemented significant changes in their airway management (82%) and cardiac arrest management protocols in COVID-19 patients (68%). Simulation-based training was the most commonly utilized training modality (82%), whereas team training (73%) and team dynamics (77%) were the most common training objectives. Conclusions: A substantial proportion of surveyed PICUs reported on large changes in their preparedness and training efforts before and during the pandemic. PICUs implemented broad strategies including modifications to staffing, PPE usage, workflow, and clinical practice, while using simulation as the preferred training modality. Further research is needed to advance the level of preparedness, support staff assuredness, and support deep learning about which preparedness actions were effective and what lessons are needed to improve PICU care and staff protection for the next COVID-19 patient waves

    Author Correction: Ecology, evolution and spillover of coronaviruses from bats.

    Get PDF
    In the past two decades, three coronaviruses with ancestral origins in bats have emerged and caused widespread outbreaks in humans, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first SARS epidemic in 2002–2003, the appreciation of bats as key hosts of zoonotic coronaviruses has advanced rapidly. More than 4,000 coronavirus sequences from 14 bat families have been identified, yet the true diversity of bat coronaviruses is probably much greater. Given that bats are the likely evolutionary source for several human coronaviruses, including strains that cause mild upper respiratory tract disease, their role in historic and future pandemics requires ongoing investigation. We review and integrate information on bat–coronavirus interactions at the molecular, tissue, host and population levels. We identify critical gaps in knowledge of bat coronaviruses, which relate to spillover and pandemic risk, including the pathways to zoonotic spillover, the infection dynamics within bat reservoir hosts, the role of prior adaptation in intermediate hosts for zoonotic transmission and the viral genotypes or traits that predict zoonotic capacity and pandemic potential. Filling these knowledge gaps may help prevent the next pandemic
    corecore