191 research outputs found

    Development of a species-specific polymerase chain reaction assay for Gardnerella vaginalis

    Get PDF
    The nucleotide sequence of the region between the 16S and 23S rRNA genes of the facultative anaerobic bacteriumGardnerella vaginalishas been determined, together with the 5′ proximal 500 nucleotides of the 23S rRNA gene. Regions suited for the development of specific, probe-confirmable polymerase chain reaction (PCR) assays were selected. PCR assays were evaluated with respect to sensitivity and specificity, the latter in comparison with a number ofG. vaginalisreference strains and closely related species likeBifidobacteriumspp. In an initial diagnostic study it appeared that the PCR test detectedG. vaginalisin 40% of women irrespective of their clinical status. Ten out of 11 patients suffering from bacterial vaginosis as defined on the basis of clinical parameters were carryingG. vaginalis

    Association between Lactobacillus species and bacterial vaginosis-related bacteria, and bacterial vaginosis scores in pregnant Japanese women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacterial vaginosis (BV), the etiology of which is still uncertain, increases the risk of preterm birth. Recent PCR-based studies suggested that BV is associated with complex vaginal bacterial communities, including many newly recognized bacterial species in non-pregnant women.</p> <p>Methods</p> <p>To examine whether these bacteria are also involved in BV in pregnant Japanese women, vaginal fluid samples were taken from 132 women, classified as normal (n = 98), intermediate (n = 21), or BV (n = 13) using the Nugent gram stain criteria, and studied. DNA extracted from these samples was analyzed for bacterial sequences of any <it>Lactobacillus</it>, four <it>Lactobacillus </it>species, and four BV-related bacteria by PCR with primers for 16S ribosomal DNA including a universal <it>Lactobacillus </it>primer, <it>Lactobacillus </it>species-specific primers for <it>L. crispatus</it>, <it>L. jensenii</it>, <it>L. gasseri</it>, and <it>L. iners</it>, and BV-related bacterium-specific primers for BVAB2, <it>Megasphaera</it>, <it>Leptotrichia</it>, and <it>Eggerthella</it>-like bacterium.</p> <p>Results</p> <p>The prevalences of <it>L. crispatus</it>, <it>L. jensenii</it>, and <it>L. gasseri </it>were significantly higher, while those of BVAB2, <it>Megasphaera</it>, <it>Leptotrichia</it>, and <it>Eggerthella</it>-like bacterium were significantly lower in the normal group than in the BV group. Unlike other <it>Lactobacillus </it>species, the prevalence of <it>L. iners </it>did not differ between the three groups and women with <it>L. iners </it>were significantly more likely to have BVAB2, <it>Megasphaera, Leptotrichia</it>, and <it>Eggerthella</it>-like bacterium. Linear regression analysis revealed associations of BVAB2 and <it>Megasphaera </it>with Nugent score, and multivariate regression analyses suggested a close relationship between <it>Eggerthella</it>-like bacterium and BV.</p> <p>Conclusion</p> <p>The BV-related bacteria, including BVAB2, <it>Megasphaera</it>, <it>Leptotrichia</it>, and <it>Eggerthella</it>-like bacterium, are common in the vagina of pregnant Japanese women with BV. The presence of <it>L. iners </it>may be correlated with vaginal colonization by these BV-related bacteria.</p

    The Lactobacillus flora in vagina and rectum of fertile and postmenopausal healthy Swedish women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Lactobacillus </it>species are the most often found inhabitants of vaginal ecosystem of fertile women. In postmenopausal women with low oestrogen levels, <it>Lactobacillus </it>flora is diminishing or absent. However, no studies have been performed to investigate the correlation between oestrogen levels and the lactobacilli in the gut. The aim of the present study was to investigate the relation in healthy women between vaginal and rectal microbial flora as well as possible variations with hormone levels.</p> <p>Methods</p> <p>Vaginal and rectal smears were taken from 20 healthy fertile women, average 40 years (range 28-49 years), in two different phases of the menstrual cycle, and from 20 postmenopausal women, average 60 years (range 52-85 years). Serum sex hormone levels were analyzed. Bacteria from the smears isolated on Rogosa Agar were grouped by Randomly Amplified Polymorphic DNA and identified by multiplex PCR and partial 16S rRNA gene sequencing.</p> <p>Results</p> <p><it>Lactobacillus crispatus </it>was more often found in the vaginal flora of fertile women than in that of postmenopausal (p = 0.036). Fifteen of 20 fertile women had lactobacilli in their rectal smears compared to 10 postmenopausal women (p = 0.071). There was no correlation between the number of bacteria in vagina and rectum, or between the number of bacteria and hormonal levels. Neither could any association between the presence of rectal lactobacilli and hormonal levels be found.</p> <p>Conclusion</p> <p><it>Lactobacillus crispatus </it>was more prevalent in the vaginal flora of fertile women, whereas the <it>Lactobacillus </it>flora of rectum did not correlate to the vaginal flora nor to hormonal levels.</p

    Identification and genotyping of bacteria from paired vaginal and rectal samples from pregnant women indicates similarity between vaginal and rectal microflora

    Get PDF
    Background: The vaginal microflora is important for maintaining vaginal health and preventing infections of the reproductive tract. The rectum has been suggested as the major source for the colonisation of the vaginal econiche. Methods: To establish whether the rectum can serve as a possible bacterial reservoir for colonisation of the vaginal econiche, we cultured vaginal and rectal specimens from pregnant women at 35-37 weeks of gestation, identified the isolates to the species level with tRNA intergenic length polymorphism analysis (tDNA-PCR) and genotyped the isolates for those subjects from which the same species was isolated simultaneously vaginally and rectally, by RAPD-analysis. One vaginal and one rectal swab were collected from a total of each of 132 pregnant women at 35-37 weeks of gestation. Swabs were cultured on Columbia CNA agar and MRS agar. For each subject 4 colonies were selected for each of both sites, i.e. 8 colonies in total. Results: Among the 844 isolates that could be identified by tDNA-PCR, a total of 63 bacterial species were present, 9 (14%) only vaginally, 26 (41%) only rectally, and 28 (44%) in both vagina and rectum. A total of 121 (91.6%) of 132 vaginal samples and 51 (38.6%) of 132 rectal samples were positive for lactobacilli. L. crispatus was the most frequently isolated Lactobacillus species from the vagina (40% of the subjects were positive), followed by L. jensenii (32%), L. gasseri (30%) and L. iners (11%). L. gasseri was the most frequently isolated Lactobacillus species from the rectum (15%), followed by L. jensenii (12%), L. crispatus (11%) and L. iners (2%). A total of 47 pregnant women carried the same species vaginally and rectally. This resulted in 50 vaginal/rectal pairs of the same species, for a total of eight different species. For 34 of the 50 species pairs (68%), isolates with the same genotype were present vaginally and rectally and a high level of genotypic diversity within species per subject was also established. Conclusion: It can be concluded that there is a certain degree of correspondence between the vaginal and rectal microflora, not only with regard to species composition but also with regard to strain identity between vaginal and rectal isolates. These results support the hypothesis that the rectal microflora serves as a reservoir for colonisation of the vaginal econiche

    Characterization of a Gemella-like organism isolated from an abscess of a rabbit: description of Gemella cunicula sp. nov.

    No full text
    An unknown Gram-positive, catalase-negative, ovoid-shaped bacterium isolated from the submandibular abscess of a rabbit was subjected to a polyphasic taxonomic analysis. Comparative 16S rRNA gene sequencing demonstrated the unknown coccus represents a new subline within the genus Gemella. The unknown isolate was readily distinguished from other recognized members of the genus Gemella, namely Gemella haemolysans, Gemella bergeri, Gemella morbillorum, Gemella palaticanis and Gemella sanguinis, by biochemical tests and electrophoretic analysis of whole-cell proteins. Based on both phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium is classified in the genus Gemella as Gemella cuniculi sp. nov. The type strain is CCUG 42726T

    Prevotella amnii sp. nov., isolated from human amniotic fluid

    No full text
    • …
    corecore