43 research outputs found

    Donor to recipient age matching in lung transplantation: A European experience

    Get PDF
    \ua9 2024 The AuthorsBackground: The age profile of organ donors and patients on lung transplantation (LT) waiting lists have changed over time. In Europe, the donor population has aged much more rapidly than the recipient population, making allocation decisions on lungs from older donors common. In this study we assessed the impact of donor and recipient age discrepancy on LT outcomes in the UK and France. Methods: A retrospective analysis of all adult single or bilateral LT in France and the UK between 2010 and 2021. Recipients were stratified into 3 age author groups: young (≤30 years), middle-aged (30–60) and older (≥60). Their donors were also stratified into 2 groups <60, ≥60. Primary graft dysfunction (PGD) rates and recipient survival was compared between matched and mismatched donor and recipient age groups. Propensity matching was employed to minimize covariate imbalances and to improve the internal validity of our results. Results: Our study cohort was 4,696 lung transplant recipients (LTRs). In young and older LTRs, there was no significant difference in 1 and 5-year post-transplant survival dependent on the age category of the donor. Young LTRs who received older donor grafts had a higher risk of severe grade 3 PGD. Conclusion: Our findings show that clinically usable organs from older donors can be utilized safely in LT, even for younger recipients. Further research is needed to assess if the higher rate of PGD3 associated with use of older donors has an effect on long-term outcomes

    Genetic and Physiological Analysis of Iron Biofortification in Maize Kernels

    Get PDF
    BACKGROUND: Maize is a major cereal crop widely consumed in developing countries, which have a high prevalence of iron (Fe) deficiency anemia. The major cause of Fe deficiency in these countries is inadequate intake of bioavailable Fe, where poverty is a major factor. Therefore, biofortification of maize by increasing Fe concentration and or bioavailability has great potential to alleviate this deficiency. Maize is also a model system for genomic research and thus allows the opportunity for gene discovery. Here we describe an integrated genetic and physiological analysis of Fe nutrition in maize kernels, to identify loci that influence grain Fe concentration and bioavailability. METHODOLOGY: Quantitative trait locus (QTL) analysis was used to dissect grain Fe concentration (FeGC) and Fe bioavailability (FeGB) from the Intermated B73 × Mo17 (IBM) recombinant inbred (RI) population. FeGC was determined by ion coupled argon plasma emission spectroscopy (ICP). FeGB was determined by an in vitro digestion/Caco-2 cell line bioassay. CONCLUSIONS: Three modest QTL for FeGC were detected, in spite of high heritability. This suggests that FeGC is controlled by many small QTL, which may make it a challenging trait to improve by marker assisted breeding. Ten QTL for FeGB were identified and explained 54% of the variance observed in samples from a single year/location. Three of the largest FeGB QTL were isolated in sister derived lines and their effect was observed in three subsequent seasons in New York. Single season evaluations were also made at six other sites around North America, suggesting the enhancement of FeGB was not specific to our farm site. FeGB was not correlated with FeGC or phytic acid, suggesting that novel regulators of Fe nutrition are responsible for the differences observed. Our results indicate that iron biofortification of maize grain is achievable using specialized phenotyping tools and conventional plant breeding techniques

    Mu Transposon Insertion Sites and Meiotic Recombination Events Co-Localize with Epigenetic Marks for Open Chromatin across the Maize Genome

    Get PDF
    The Mu transposon system of maize is highly active, with each of the ∼50–100 copies transposing on average once each generation. The approximately one dozen distinct Mu transposons contain highly similar ∼215 bp terminal inverted repeats (TIRs) and generate 9-bp target site duplications (TSDs) upon insertion. Using a novel genome walking strategy that uses these conserved TIRs as primer binding sites, Mu insertion sites were amplified from Mu stocks and sequenced via 454 technology. 94% of ∼965,000 reads carried Mu TIRs, demonstrating the specificity of this strategy. Among these TIRs, 21 novel Mu TIRs were discovered, revealing additional complexity of the Mu transposon system. The distribution of >40,000 non-redundant Mu insertion sites was strikingly non-uniform, such that rates increased in proportion to distance from the centromere. An identified putative Mu transposase binding consensus site does not explain this non-uniformity. An integrated genetic map containing more than 10,000 genetic markers was constructed and aligned to the sequence of the maize reference genome. Recombination rates (cM/Mb) are also strikingly non-uniform, with rates increasing in proportion to distance from the centromere. Mu insertion site frequencies are strongly correlated with recombination rates. Gene density does not fully explain the chromosomal distribution of Mu insertion and recombination sites, because pronounced preferences for the distal portion of chromosome are still observed even after accounting for gene density. The similarity of the distributions of Mu insertions and meiotic recombination sites suggests that common features, such as chromatin structure, are involved in site selection for both Mu insertion and meiotic recombination. The finding that Mu insertions and meiotic recombination sites both concentrate in genomic regions marked with epigenetic marks of open chromatin provides support for the hypothesis that open chromatin enhances rates of both Mu insertion and meiotic recombination

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    Une cause rare d’hypertension en hémodialyse

    Full text link

    Statistical Exploitation of Patent Data Banks

    No full text
    corecore