69 research outputs found

    Human iPS cell-derived astrocyte transplants preserve respiratory function after spinal cord injury.

    Get PDF
    Transplantation-based replacement of lost and/or dysfunctional astrocytes is a promising therapy for spinal cord injury (SCI) that has not been extensively explored, despite the integral roles played by astrocytes in the central nervous system (CNS). Induced pluripotent stem (iPS) cells are a clinically-relevant source of pluripotent cells that both avoid ethical issues of embryonic stem cells and allow for homogeneous derivation of mature cell types in large quantities, potentially in an autologous fashion. Despite their promise, the iPS cell field is in its infancy with respect to evaluating in vivo graft integration and therapeutic efficacy in SCI models. Astrocytes express the major glutamate transporter, GLT1, which is responsible for the vast majority of glutamate uptake in spinal cord. Following SCI, compromised GLT1 expression/function can increase susceptibility to excitotoxicity. We therefore evaluated intraspinal transplantation of human iPS cell-derived astrocytes (hIPSAs) following cervical contusion SCI as a novel strategy for reconstituting GLT1 expression and for protecting diaphragmatic respiratory neural circuitry. Transplant-derived cells showed robust long-term survival post-injection and efficiently differentiated into astrocytes in injured spinal cord of both immunesuppressed mice and rats. However, the majority of transplant-derived astrocytes did not express high levels of GLT1, particularly at early times post-injection. To enhance their ability to modulate extracellular glutamate levels, we engineered hIPSAs with lentivirus to constitutively express GLT1. Overexpression significantly increased GLT1 protein and functional GLT1-mediated glutamate uptake levels in hIPSAs both in vitro and in vivo post-transplantation. Compared to human fibroblast control and unmodified hIPSA transplantation, GLT1-overexpressing hIPSAs reduced (1) lesion size within the injured cervical spinal cord, (2) morphological denervation by respiratory phrenic motor neurons at the diaphragm neuromuscular junction, and (3) functional diaphragm denervation as measured by recording of spontaneous EMGs and evoked compound muscle action potentials. Our findings demonstrate that hiPSA transplantation is a therapeutically-powerful approach for SCI

    Differentiation of human adipose-derived stem cells into neuron/motoneuron-like cells for cell replacement therapy of spinal cord injury

    Get PDF
    Human adipose-derived stem cells (hADSCs) are increasingly presumed to be a prospective stem cell source for cell replacement therapy in various degenerative and/or traumatic diseases. The potential of trans-differentiating hADSCs into motor neuron cells indisputably provides an alternative way for spinal cord injury (SCI) treatment. In the present study, a stepwise and efficient hADSC trans-differentiation protocol with retinoic acid (RA), sonic hedgehog (SHH), and neurotrophic factors were developed. With this protocol hADSCs could be converted into electrophysiologically active motoneuron-like cells (hADSC-MNs), which expressed both a cohort of pan neuronal markers and motor neuron specific markers. Moreover, after being primed for neuronal differentiation with RA/SHH, hADSCs were transplanted into SCI mouse model and they survived, migrated, and integrated into injured site and led to partial functional recovery of SCI mice. When ablating the transplanted hADSC-MNs harboring HSV-TK-mCherry overexpression system with antivirial Ganciclovir (GCV), functional relapse was detected by motor-evoked potential (MEP) and BMS assays, implying that transplanted hADSC-MNs participated in rebuilding the neural circuits, which was further confirmed by retrograde neuronal tracing system (WGA). GFP-labeled hADSC-MNs were subjected to whole-cell patch-clamp recording in acute spinal cord slice preparation and both action potentials and synaptic activities were recorded, which further confirmed that those pre-conditioned hADSCs indeed became functionally active neurons in vivo. As well, transplanted hADSC-MNs largely prevented the formation of injury-induced cavities and exerted obvious immune-suppression effect as revealed by preventing astrocyte reactivation and favoring the secretion of a spectrum of anti-inflammatory cytokines and chemokines. Our work suggests that hADSCs can be readily transformed into MNs in vitro, and stay viable in spinal cord of the SCI mouse and exert multi-therapeutic effects by rebuilding the broken circuitry and optimizing the microenvironment through immunosuppression

    Transplantation of stem cell-derived astrocytes for the treatment of amyotrophic lateral sclerosis and spinal cord injury

    Get PDF
    Neglected for years, astrocytes are now recognized to fulfill and support many, if not all, homeostatic functions of the healthy central nervous system (CNS). During neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and spinal cord injury (SCI), astrocytes in the vicinity of degenerating areas undergo both morphological and functional changes that might compromise their intrinsic properties. Evidence from human and animal studies show that deficient astrocyte functions or loss-of-astrocytes largely contribute to increased susceptibility to cell death for neurons, oligodendrocytes and axons during ALS and SCI disease progression. Despite exciting advances in experimental CNS repair, most of current approaches that are translated into clinical trials focus on the replacement or support of spinal neurons through stem cell transplantation, while none focus on the specific replacement of astroglial populations. Knowing the important functions carried out by astrocytes in the CNS, astrocyte replacement-based therapies might be a promising approach to alleviate overall astrocyte dysfunction, deliver neurotrophic support to degenerating spinal tissue and stimulate endogenous CNS repair abilities. Enclosed in this review, we gathered experimental evidence that argue in favor of astrocyte transplantation during ALS and SCI. Based on their intrinsic properties and according to the cell type transplanted, astrocyte precursors or stem cell-derived astrocytes promote axonal growth, support mechanisms and cells involved in myelination, are able to modulate the host immune response, deliver neurotrophic factors and provide protective molecules against oxidative or excitotoxic insults, amongst many possible benefits. Embryonic or adult stem cells can even be genetically engineered in order to deliver missing gene products and therefore maximize the chance of neuroprotection and functional recovery. However, before broad clinical translation, further preclinical data on safety, reliability and therapeutic efficiency should be collected. Although several technical challenges need to be overcome, we discuss the major hurdles that have already been met or solved by targeting the astrocyte population in experimental ALS and SCI models and we discuss avenues for future directions based on latest molecular findings regarding astrocyte biology

    Voices of Farmer-Widows Amid the Agrarian Crisis in India

    No full text
    10.1080/07491409.2019.1669756Women's Studies in Communication4204432-45

    MAP7 Regulates Axon Collateral Branch Development in Dorsal Root Ganglion Neurons.

    Get PDF
    Collateral branches from axons are key components of functional neural circuits that allow neurons to connect with multiple synaptic targets. Like axon growth and guidance, formation of collateral branches depends on the regulation of microtubules, but how such regulation is coordinated to ensure proper circuit development is not known. Based on microarray analysis, we have identified a role for microtubule-associated protein 7 (MAP7) during collateral branch development of dorsal root ganglion (DRG) sensory neurons. We show that MAP7 is expressed at the onset of collateral branch formation. Perturbation of its expression by overexpression or shRNA knockdown alters axon branching in cultured DRG neurons. Localization and time-lapse imaging analysis reveals that MAP7 is enriched at branch points and colocalizes with stable microtubules, but enters the new branch with a delay, suggesting a role in branch maturation. We have also investigated a spontaneous mutant mouse that expresses a truncated MAP7 and found a gain-of-function phenotype in vitro and in vivo Further domain analysis suggests that the amino half of MAP7 is responsible for branch formation, suggesting a mechanism that is independent of its known interaction with kinesin. Moreover, this mouse exhibits increased pain sensitivity, a phenotype that is consistent with increased collateral branch formation. Therefore, our study not only uncovers the first neuronal function of MAP7, but also demonstrates the importance of proper microtubule regulation in neural circuit development. Furthermore, our data provide new insights into microtubule regulation during axonal morphogenesis and may shed light on MAP7 function in neurological disorders. SIGNIFICANCE STATEMENT Neurons communicate with multiple targets by forming axonal branches. In search of intrinsic factors that control collateral branch development, we identified a role for microtubule-associated protein 7 (MAP7) in dorsal root ganglion sensory neurons. We show that MAP7 expression is developmentally regulated and perturbation of this expression alters branch formation. Cell biological analysis indicates that MAP7 promotes branch maturation. Analysis of a spontaneous mouse mutant suggests a molecular mechanism for branch regulation and the potential influence of collateral branches on pain sensitivity. Our studies thus establish the first neuronal function of MAP7 and demonstrate its role in branch morphogenesis and neural circuit function. These findings may help in our understanding of the contribution of MAP7 to neurological disorders and nerve regeneration

    Polarity in migrating neurons is related to a mechanism analogous to cytokinesis

    Get PDF
    SummaryMigrating neurons are bipolar, with a leading process and a trailing process [1]. The proximal region of the leading process displays a concentration of F-actin that contributes to the advance of the soma and the centrosome [2–7]. Here, we show that kinesin-6, a microtubule-based motor protein best known for its role in cytokinesis, also concentrates in this region. Depletion of kinesin-6 results in multipolar neurons that either are stationary or continuously change their direction of movement. In such neurons, F-actin no longer concentrates in a single process. During cytokinesis, kinesin-6 forms a complex with a Rho-family GTPase-activating protein called MgcRacGAP to signal to the actin cytoskeleton so that cortical movements are concentrated in the cleavage furrow [8–13]. During neuronal migration, MgcRacGap also concentrates in the proximal region of the leading process, and inhibition of its activity results in a phenotype similar to kinesin-6 depletion. We conclude that neuronal migration utilizes a cytoskeletal pathway analogous to cytokinesis, with kinesin-6 signaling through MgcRacGap to the actin cytoskeleton to constrain process number and restrict protrusive activity to a single leading process, thus resulting in a bipolar neuron able to move in a directed fashion
    corecore