40 research outputs found

    Exploiting transitivity in probabilistic models for ontology learning

    Get PDF
    Nel natural language processing (NLP) catturare il significato delle parole è una delle sfide a cui i ricercatori sono largamente interessati. Le reti semantiche di parole o concetti, che strutturano in modo formale la conoscenza, sono largamente utilizzate in molte applicazioni. Per essere effettivamente utilizzate, in particolare nei metodi automatici di apprendimento, queste reti semantiche devono essere di grandi dimensioni o almeno strutturare conoscenza di domini molto specifici. Il nostro principale obiettivo è contribuire alla ricerca di metodi di apprendimento di reti semantiche concentrandosi in differenti aspetti. Proponiamo un nuovo modello probabilistico per creare o estendere reti semantiche che prende contemporaneamente in considerazine sia le evidenze estratte nel corpus sia la struttura della rete semantiche considerata nel training. In particolare il nostro modello durante l'apprendimento sfrutta le proprietà strutturali, come la transitività, delle relazioni che legano i nodi della nostra rete. La formulazione della probabilità che una data relazione tra due istanze appartiene alla rete semantica dipenderà da due probabilità: la probabilità diretta stimata delle evidenze del corpus e la probabilità indotta che deriva delle proprietà strutturali della relazione presa in considerazione. Il modello che proponiano introduce alcune innovazioni nella stima di queste probabilità. Proponiamo anche un modello che può essere usato per apprendere conoscenza in differenti domini di interesse senza un grande effort aggiuntivo per l'adattamento. In particolare, nell'approccio che proponiamo, si apprende un modello da un dominio generico e poi si sfrutta tale modello per estrarre nuova conoscenza in un dominio specifico. Infine proponiamo Semantic Turkey Ontology Learner (ST-OL): un sistema di apprendimento di ontologie incrementale. Mediante ontology editor, ST-OL fornisce un efficiente modo di interagire con l'utente finale e inserire le decisioni di tale utente nel loop dell'apprendimento. Inoltre il modello probabilistico integrato in ST-OL permette di sfruttare la transitività delle relazioni per indurre migliori modelli di estrazione. Mediante degli esperimenti dimostriamo che tutti i modelli che proponiamo danno un reale contributo ai differenti task che consideriamo migliorando le prestazioni.Capturing word meaning is one of the challenges of natural language processing (NLP). Formal models of meaning such as semantic networks of words or concepts are knowledge repositories used in a variety of applications. To be effectively used, these networks have to be large or, at least, adapted to specific domains. Our main goal is to contribute practically to the research on semantic networks learning models by covering different aspects of the task. We propose a novel probabilistic model for learning semantic networks that expands existing semantic networks taking into accounts both corpus-extracted evidences and the structure of the generated semantic networks. The model exploits structural properties of target relations such as transitivity during learning. The probability for a given relation instance to belong to the semantic networks of words depends both on its direct probability and on the induced probability derived from the structural properties of the target relation. Our model presents some innovations in estimating these probabilities. We also propose a model that can be used in different specific knowledge domains with a small effort for its adaptation. In this approach a model is learned from a generic domain that can be exploited to extract new informations in a specific domain. Finally, we propose an incremental ontology learning system: Semantic Turkey Ontology Learner (ST-OL). ST-OL addresses two principal issues. The first issue is an efficient way to interact with final users and, then, to put the final users decisions in the learning loop. We obtain this positive interaction using an ontology editor. The second issue is a probabilistic learning semantic networks of words model that exploits transitive relations for inducing better extraction models. ST-OL provides a graphical user interface and a human- computer interaction workflow supporting the incremental leaning loop of our learning semantic networks of words

    Location intelligence system for people estimation in indoor environment during emergency operation

    Get PDF
    In the last years, location intelligence systems have been characterized by an increasing interest in several sectors. Among them, those of emergencies are mainly involved in order to enhance the rescue procedures and to reduce the intervention time, especially within indoor environment where GPS does not support the emergency operations. The authors define a low cost location intelligence system based on Channel State Information (CSI) of Wi-Fi and low-energy ESP32 SoC platform to analyze CSI data of Wi-Fi Signals. The technical solution utilizes wavelet filter to remove background noise in the CSI data, Principal component analysis (PCA) to reduce the dimensionality of the CSI data and get the most valuable data that are used as feature for the defined DNN model. The experimental results show the best performance of this model compared to the other machine learning (ML) algorithms analysed

    E-health-IoT Universe: A Review

    Get PDF
    The Internet of Things (IoT) devices are able to collect and share data directly with other devices through the cloud environment, providing a huge amount of information to be gathered, stored and analyzed for data-analytics processes. The scenarios in which the IoT devices may be useful are amazing varying, from automotive, to industrial automation or remote monitoring of domestic environment. Furthermore, has been proved that healthcare applications represent an important field of interest for IoT devices, due to the capability of improving the access to care, reducing the cost of healthcare and most importantly increasing the quality of life of the patients. In this paper, we analyze the state-of-art of IoT in medical environment, illustrating an extended range of IoT-driven healthcare applications that, however, still need innovative and high technology-based solutions to be considered ready to market. In particular, problems regarding characteristics of response-time and precision will be examined.  Furthermore, wearable and energy saving properties will be investigated in this paper and also the IT architectures able to ensure security and privacy during the all data-transmission process. Finally, considerations about data mining applications, such as risks prediction, classification and clustering will be provided, that are considered fundamental issues to ensure the accuracy of the care processes

    Blockchain Framework in Digital Government for the Certification of Authenticity, Timestamping and Data Property

    Get PDF
    In an ever more digitized world where information and data are increasingly dematerialized, the question of how to certify intellectual property and define when a document has been created or modified without the presence of any third-party guarantor inevitably arises. This document proposes a decentralized method that, by exploiting blockchain technology and distributed peer-to-peer (P2P) networks, makes it possible to historicize information in such a way that it is not possible for a user to alter its dating, attribute ownership or modify it by impersonating the author. The data certification (document, image, film, data archive, etc.) takes place through the creation of an immutable relationship between the owner and the data. At the legal level, many countries are beginning to regulate blockchain technology so that it can be used in many areas, such as the production chain, the Internet of Things or Public Administration. In this paper we present a solution to promote digital government and greater transparency, through the use of a framework based on the Ethereum blockchain, smart contracts and a decentralized application

    Analysing and Visualizing Tweets for U.S. President Popularity

    Get PDF
    In our society we are continually invested by a stream of information (opinions, preferences, comments, etc.). This shows how Twitter users react to news or events that they attend or take part in real time and with interest. In this context it becomes essential to have the appropriate tools in order to be able to analyze and extract data and information hidden in their large number of tweets. Social networks are a source of information with no rivals in terms of amount and variety of information that can be extracted from them. We propose an approach to analyze, with the help of automated tools, comments and opinions taken from social media in a real time environment. We developed a software system in R based on the Bayesian approach for text categorization. We aim of identifying sentiments expressed by the tweets posted on the Twitter social platform. The analysis of sentiment spread on social networks allows to identify the free thoughts, expressed authentically. In particular, we analyze the sentiments related to U.S President popularity by also visualizing tweets on a map. This allows to make an additional analysis of the real time reactions of people by associating the reaction of the single person who posted the tweet to his real time position in Unites States. In particular, we provide a visualization based on the geographical analysis of the sentiments of the users who posted the tweets

    e health iot universe a review

    Get PDF
    The Internet of Things (IoT) devices are able to collect and share data directly with other devices through the cloud environment, providing a huge amount of information to be gathered, stored and analyzed for data-analytics processes. The scenarios in which the IoT devices may be useful are amazing varying, from automotive, to industrial automation or remote monitoring of domestic environment. Furthermore, has been proved that healthcare applications represent an important field of interest for IoT devices, due to the capability of improving the access to care, reducing the cost of healthcare and most importantly increasing the quality of life of the patients. In this paper, we analyze the state-of-art of IoT in medical environment, illustrating an extended range of IoT-driven healthcare applications that, however, still need innovative and high technology-based solutions to be considered ready to market. In particular, problems regarding characteristics of response-time and precision will be examined. Furthermore, wearable and energy saving properties will be investigated in this paper and also the IT architectures able to ensure security and privacy during the all data-transmission process. Finally, considerations about data mining applications, such as risks prediction, classification and clustering will be provided, that are considered fundamental issues to ensure the accuracy of the care processes

    Smarter City: Smart Energy Grid based on Blockchain Technology

    Get PDF
    The improvement of the Quality of Life (QoL) and the enhancement of the Quality of Services (QoS) represent the main goal of every city evolutionary process. It is possible making cities smarter promoting innovative solutions by use of Information and Communication Technology (ICT) for collecting and analysing large amounts of data generated by several sources, such as sensor networks, wearable devices, and IoT devices spread among the city. The integration of different technologies and different IT systems, needed to build smart city applications and services, remains the most challenge to overcome. In the Smart City context, this paper intends to investigate the Smart Environment pillar, and in particular the aspect related to the implementation of Smart Energy Grid for citizens in the urban context. The innovative characteristic of the proposed solution consists of using the Blockchain technology to join the Grid, exchanging information, and buy/sell energy between the involved nodes (energy providers and private citizens), using the Blockchain granting ledger

    Analysing and Visualizing Tweets for U.S. President Popularity

    Get PDF
    In our society we are continually invested by a stream of information (opinions, preferences, comments, etc.). This shows how Twitter users react to news or events that they attend or take part in real time and with interest. In this context it becomes essential to have the appropriate tools in order to be able to analyze and extract data and information hidden in their large number of tweets. Social networks are a source of information with no rivals in terms of amount and variety of information that can be extracted from them. We propose an approach to analyze, with the help of automated tools, comments and opinions taken from social media in a real time environment. We developed a software system in R based on the Bayesian approach for text categorization. We aim of identifying sentiments expressed by the tweets posted on the Twitter social platform. The analysis of sentiment spread on social networks allows to identify the free thoughts, expressed authentically. In particular, we analyze the sentiments related to U.S President popularity by also visualizing tweets on a map. This allows to make an additional analysis of the real time reactions of people by associating the reaction of the single person who posted the tweet to his real time position in Unites States. In particular, we provide a visualization based on the geographical analysis of the sentiments of the users who posted the tweets
    corecore