17 research outputs found

    Changes in the gene expression profile during spontaneous migraine attacks

    Get PDF
    Migraine attacks are delimited, allowing investigation of changes during and outside attack. Gene expression fluctuates according to environmental and endogenous events and therefore, we hypothesized that changes in RNA expression during and outside a spontaneous migraine attack exist which are specific to migraine. Twenty-seven migraine patients were assessed during a spontaneous migraine attack, including headache characteristics and treatment effect. Blood samples were taken during attack, two hours after treatment, on a headache-free day and after a cold pressor test. RNA-Sequencing, genotyping, and steroid profiling were performed. RNA-Sequences were analyzed at gene level (differential expression analysis) and at network level, and genomic and transcriptomic data were integrated. We found 29 differentially expressed genes between ‘attack’ and ‘after treatment’, after subtracting non-migraine specific genes, that were functioning in fatty acid oxidation, signaling pathways and immune-related pathways. Network analysis revealed mechanisms affected by changes in gene interactions, e.g. ‘ion transmembrane transport’. Integration of genomic and transcriptomic data revealed pathways related to sumatriptan treatment, i.e. ‘5HT1 type receptor mediated signaling pathway’. In conclusion, we uniquely investigated intra-individual changes in gene expression during a migraine attack. We revealed both genes and pathways potentially involved in the pathophysiology of migraine and/or migraine treatment.publishedVersio

    Pre-treatment with sumatriptan for cilostazol induced headache in healthy volunteers

    Get PDF
    Abstract Background Previous studies indicate that sumatriptan is not effective when second messenger levels are high as after cilostazol provocation. Therefore, we have conducted the present study, where sumatriptan is administrated as pretreatment before cAMP increases due to cilostazol intake. Our hypothesis was that pretreatment with sumatriptan would have a significant effect against cilostazol induced headache in healthy volunteers. Methods In a double-blind, randomized, crossover design, 30 healthy volunteers of both sexes received cilostazol 200 mg on two separate days, each day preceded by oral sumatriptan (2 × 50 mg) or placebo. Headache response and accompanying symptoms were registered in a questionnaire by the participants themselves. Results Cilostazol induced a mild to moderate headache in all but 3 participants (Range 0–7 on Numerical Rating Scale). There was no significant difference in headache score 2 h (p = 0.67) or 4 h (p = 0.1) after treatment between the 2 days. Median peak headache score was 1.5 (range 0–5) on the sumatriptan day and 2 (range 0–7) on the placebo day (p = 0.26). Conclusion Pre-treatment with sumatriptan prevents cilostazol induced headache from developing. However, the placebo group did not develop enough headache to get statistical significant results. The cilostazol pre-treatment model is valuable for experimental headache research and perhaps for testing drugs with another mechanism of action. Trial registration ClinicalTrials.gov Identifier: NCT03156920

    Histamine and migraine revisited: mechanisms and possible drug targets

    Get PDF
    Abstract Objective To review the existing literature on histamine and migraine with a focus on the molecule, its receptors, its use in inducing migraine, and antihistamines in the treatment of migraine. Background Histamine has been known to cause a vascular type headache for almost a hundred years. Research has focused on antihistamines as a possible treatment and histamine as a migraine provoking agent but there has been little interest in this field for the last 25 years. In recent years two additional histamine (H3 and H4) receptors have been discovered and a series of non-sedating antihistamines have been developed. It is therefore timely to review the field again. Methods For this review the PubMed/MEDLINE database was searched for eligible studies. We searched carefully for all articles on histamine, antihistamines and histamine receptors in relation to migraine and the nervous system. The following search terms were used: histamine, migraine disorders, migraine, headache, antihistamines, histamine antagonists, clinical trials, induced headache, histamine H3 receptor, histamine H4 receptor and pharmacology. Four hundred thirty-six titles were read, 135 abstracts were read, 112 articles were read in full and 53 articles were used in this review. Review process resulted in 12 articles added to a total of 65. Findings Early studies of H1 and H2 antihistamines lack scientific strength and show conflicting results. Most of the antihistaminic drugs used in these trials bind also to other receptors which makes it difficult to conclude on the antihistaminic effect. Histamine is an efficient inducer of migraine attacks in migraine patients by an H1 mechanism most likely extracerebrally. These findings merit further investigation of antihistamines in clinical drug trials. The H3 and H4 receptors are found in primarily in CNS and immune tissues, respectively. H3 is likely to be involved in antinociception and has been linked with cognitive, neurodegenerative and sleep disorders. The only marketed H3 agent, pitolisant, is a brain penetrant H3 antagonist/inverse agonist which increases central histamine and causes headache. The experimental H3 agonist Nα-methylhistamine has shown promising results as a migraine preventative in studies of uncertain quality. With the current limited knowledge of the H4 receptor it is questionable whether or not the receptor is involved in migraine. Conclusion There is insufficient support for first generation antihistamines (both H1 and H2) as preventive migraine medications and sedation and weight gain are unacceptable side effects. Non-sedating H1 antihistamines need to be appropriately tested. Central H3 receptors seem to have a role in migraine that merit further investigation. The histaminergic system may be a goal for novel migraine drugs

    Cilostazol induced migraine does not respond to sumatriptan in a double blind trial

    Get PDF
    Abstract Background Cilostazol is an inhibitor of phosphodiesterase 3 and thus causes accumulation of cAMP. It induces migraine-like attacks in migraine patients. Whether the cilostazol model responds to sumatriptan in migraine patients and therefore is valid for testing of future anti-migraine medications has never been investigated. Methods In a cross-over study, 30 patients received cilostazol (200 mg p.o.) on two separate days each day followed by oral self-administered placebo or sumatriptan 50 mg. We recorded headache characteristics and associated symptoms using a questionnaire. The 30 participants were asked to subsequently treat their spontaneous attacks with sumatriptan (50 mg) or placebo in a double-blind cross-over design and 15 participants did so. Results Cilostazol induced headache with some migraine characteristics in all participants; 18 patients on the sumatriptan day and 19 patients on the placebo day fulfilled criteria for a migraine-like attack. The difference in median headache intensity between sumatriptan and placebo at 2 h was not significant (p = 0.09), but it was at 4 h (p = 0.017). During spontaneous attacks, the difference between placebo and sumatriptan was not significant at 2 h (p = 0.26), but it was highly significant at 4 h (p = 0.006). Conclusion The cilostazol model in migraine patients could not be validated by a sufficient sumatriptan response. The model may perhaps respond to new drugs that act intracellularly or directly on ion channels. Trial registration The study is registered on clinicaltrials.gov (NCT02486276
    corecore