3,224 research outputs found
Low-power micro-scale CMOS-compatible silicon sensor on a suspended membrane.
In this paper we describe a new, simple and cheap silicon device operating at high temperature at a very low power of a few mW. The essential part of the device is a nano-size conductive link 10-100 nm in size (the so-called antifuse) formed in between two poly-silicon electrodes separated by a thin SiO2 layer. The device can be utilized in chemical sensors or chemical micro-reactors requiring high temperature and very low power consumption e.g. in portable, battery operated systems. As a direct application, we mention a gas sensor (i.e. Pellistor) for hydrocarbons (butane, methane, propane, etc.) based on temperature changes due to the catalytic combustion of hydrocarbons. The power consumed by our device is at about 2% of the power consumed by conventional Pellistors
A transportable strontium optical lattice clock
We report on a transportable optical clock, based on laser-cooled strontium
atoms trapped in an optical lattice. The experimental apparatus is composed of
a compact source of ultra-cold strontium atoms including a compact cooling
laser set-up and a transportable ultra-stable laser for interrogating the
optical clock transition. The whole setup (excluding electronics) fits within a
volume of less than 2 m. The high degree of operation reliability of both
systems allowed the spectroscopy of the clock transition to be performed with
10 Hz resolution. We estimate an uncertainty of the clock of .Comment: 12 pages, 9 figures, to be published in Appl. Phys.
A compact and efficient strontium oven for laser-cooling experiments
Here we describe a compact and efficient strontium oven well suited for
laser-cooling experiments. Novel design solutions allowed us to produce a
collimated strontium atomic beam with a flux of 1.0\times10^13 s^-1 cm^-2 at
the oven temperature of 450 {\deg}C, reached with an electrical power
consumption of 36 W. The oven is based on a stainless-steel reservoir, filled
with 6 g of metallic strontium, electrically heated in a vacuum environment by
a tantalum wire threaded through an alumina multi-bore tube. The oven can be
hosted in a standard DN40CF cube and has an estimated continuous operation
lifetime of 10 years. This oven can be used for other alkali and alkaline earth
metals with essentially no modifications.Comment: 6 pages, 6 figures, Review of Scientific Instruments, in pres
Recommended from our members
Measures of reading comprehension: The effects of text type and time limits on students' performance.
Although the importance of reading comprehension is generally recognized, a better understanding of the factors influencing measurement of reading comprehension may impact the ability to assess strengths and deficits. The current study examined the effects of text type and time limits on the rate of students' performance across four common assessments of reading comprehension. Results showed similarities between performance with narrative and expository texts and across time limit conditions for all of the assessments. In terms of comparing across reading comprehension assessments, the findings are limited by the differences in the response channels and stimulus conditions of each assessment. The results have implications for the development of measurement systems and the assessment of reading comprehension
Long range transport of ultra cold atoms in a far-detuned 1D optical lattice
We present a novel method to transport ultra cold atoms in a focused optical
lattice over macroscopic distances of many Rayleigh ranges. With this method
ultra cold atoms were transported over 5 cm in 250 ms without significant atom
loss or heating. By translating the interference pattern together with the beam
geometry the trap parameters are maintained over the full transport range.
Thus, the presented method is well suited for tightly focused optical lattices
that have sufficient trap depth only close to the focus. Tight focusing is
usually required for far-detuned optical traps or traps that require high laser
intensity for other reasons. The transport time is short and thus compatible
with the operation of an optical lattice clock in which atoms are probed in a
well designed environment spatially separated from the preparation and
detection region.Comment: 14 pages, 6 figure
Chemotaxis Receptor Complexes: From Signaling to Assembly
Complexes of chemoreceptors in the bacterial cytoplasmic membrane allow for the sensing of ligands with remarkable sensitivity. Despite the excellent characterization of the chemotaxis signaling network, very little is known about what controls receptor complex size. Here we use in vitro signaling data to model the distribution of complex sizes. In particular, we model Tar receptors in membranes as an ensemble of different sized oligomer complexes, i.e., receptor dimers, dimers of dimers, and trimers of dimers, where the relative free energies, including receptor modification, ligand binding, and interaction with the kinase CheA determine the size distribution. Our model compares favorably with a variety of signaling data, including dose-response curves of receptor activity and the dependence of activity on receptor density in the membrane. We propose that the kinetics of complex assembly can be measured in vitro from the temporal response to a perturbation of the complex free energies, e.g., by addition of ligand
The Space Optical Clocks Project: Development of high-performance transportable and breadboard optical clocks and advanced subsystems
The use of ultra-precise optical clocks in space ("master clocks") will allow
for a range of new applications in the fields of fundamental physics (tests of
Einstein's theory of General Relativity, time and frequency metrology by means
of the comparison of distant terrestrial clocks), geophysics (mapping of the
gravitational potential of Earth), and astronomy (providing local oscillators
for radio ranging and interferometry in space). Within the ELIPS-3 program of
ESA, the "Space Optical Clocks" (SOC) project aims to install and to operate an
optical lattice clock on the ISS towards the end of this decade, as a natural
follow-on to the ACES mission, improving its performance by at least one order
of magnitude. The payload is planned to include an optical lattice clock, as
well as a frequency comb, a microwave link, and an optical link for comparisons
of the ISS clock with ground clocks located in several countries and
continents. Undertaking a necessary step towards optical clocks in space, the
EU-FP7-SPACE-2010-1 project no. 263500 (SOC2) (2011-2015) aims at two
"engineering confidence", accurate transportable lattice optical clock
demonstrators having relative frequency instability below 1\times10^-15 at 1 s
integration time and relative inaccuracy below 5\times10^-17. This goal
performance is about 2 and 1 orders better in instability and inaccuracy,
respectively, than today's best transportable clocks. The devices will be based
on trapped neutral ytterbium and strontium atoms. One device will be a
breadboard. The two systems will be validated in laboratory environments and
their performance will be established by comparison with laboratory optical
clocks and primary frequency standards. In this paper we present the project
and the results achieved during the first year.Comment: Contribution to European Frequency and Time Forum 2012, Gothenburg,
Swede
Quantum coherence controls the charge separation in a prototypical artificial light harvesting system
In artificial light harvesting systems the conversion of light into charges or chemical energy happens on the femtosecond time scale and is thought to involve the incoherent jump of an electron from the optical absorber to an electron acceptor. Here we investigate the primary process of electronic charge transfer dynamics in a carotene-porphyrin-fullerene triad, a prototypical elementary component for an artificial light harvesting system combining coherent femtosecond spectroscopy and first-principles quantum dynamics simulations. Our experimental and theoretical results provide strong evidence that the driving mechanism of the photoinduced current generation cycle is a quantum-correlated wavelike motion of electrons and nuclei on a timescale of few tens of femtoseconds. We furthermore highlight the fundamental role played by the interface between the light-absorbing chromophore and the charge acceptor in triggering the coherent wavelike electron-hole splitting. © 2013 IEEE
- …