4 research outputs found

    Cytotoxic effects of pentachlorophenol (PCP) and its metabolite tetrachlorohydroquinone (TCHQ) on liver cells are modulated by antioxidants

    Get PDF
    The worldwide distribution and high bioaccumulation potential of pentachlorophenol (PCP) in aquatic organisms imply a high toxicological impact in aquatic systems. Firstly, our investigations show that, similar to mammalian cell lines, PCP can be metabolized to tetrachlorohydroquinone (TCHQ) in the permanent cell line derived from rainbow trout liver cells (RTL-W1). Moreover, we demonstrate that PCP as well as its metabolite TCHQ is capable of influencing the viability of these cells. Three cell viability assays were performed to assess possible cellular targets of these substances. Thus, the cytotoxicity of the PCP-derivative TCHQ was shown for the first time in a fish cell line. Further investigations revealed the involvement of ROS in the cytotoxicity of PCP and its metabolite TCHQ. The observation of oxidative stress provides a plausible explanation for the increased cytotoxicity at higher concentrations especially for PCP and implies possible mechanisms underlying these observations. In addition, antioxidants such as ascorbic acid and quercetin modulate the detrimental effects of PCP and TCHQ whereby both compounds exacerbate the cytotoxic effects of high PCP and TCHQ concentrations

    Occurrence and removal of N-nitrosamines in wastewater treatment plants.

    No full text
    The presence of nitrosamines in wastewater might pose a risk to water resources even in countries where chlorination or chloramination are hardly used for water disinfection. We studied the variation of concentrations and removal efficiencies of eight N-nitrosamines among 21 full-scale sewage treatment plants (STPs) in Switzerland and temporal variations at one of these plants. N-nitrosodimethylamine (NDMA) was the predominant compound in STP primary effluents with median concentrations in the range of 5-20 ng/L, but peak concentrations up to 1 microg/L. N-nitrosomorpholine (NMOR) was abundant in all plants at concentrations of 5-30 ng/L, other nitrosamines occurred at a lower number of plants at similar levels. From concentrations in urine samples and domestic wastewater we estimated that human excretion accounted for levels o
    corecore