45 research outputs found

    Using Malaise traps to assess aculeate Hymenoptera associated with farmland linear habitats across a range of farming intensities

    Get PDF
    The intensification of farming practices, along with the loss and fragmentation of semi-natural habitats within agricultural areas, has contributed significantly to insect decline worldwide including flower-visiting aculeate Hymenoptera. In this study aculeate Hymenoptera were collected using bi-directional Malaise traps placed along farmland linear habitats across a range of farming intensities. The aim was to further our understanding of the value of farmland linear habitats to this insect group and in particular the Vespinae, an understudied subfamily. Overall, significantly greater aculeate Hymenoptera species richness was found on extensive than on intermediate and intensive farms. Significantly more species and specimens were collected on the side of the traps adjacent to the linear habitats compared to the side which opened onto the fields. Aculeate Hymenoptera species richness was also significantly greater in dense hedgerows than in open hedgerows. Furthermore, two out of six Vespinae species, Vespula rufa and Vespula vulgaris, had significantly more individuals on extensive than intensive farms. This study highlights that low-intensity farming practices and farmland linear habitats, especially dense hedgerows, may enhance aculeate Hymenoptera occurrence in agricultural areas. It also demonstrates that Malaise traps set up along linear habitats across a range of farming intensities can make a significant contribution to knowledge regarding the biodiversity value of such areas. Given that selected Vespinae species follow similar trends to aculeate Hymenoptera, the possibility of using them as simple biodiversity indicators is worthy of further exploration.© 2019 The Royal Entomological Societ

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    Produtividade de genótipos de trigo duplo propósito submetidos ao pastejo com vacas em lactação

    No full text
    RESUMO Esta pesquisa foi conduzida com o objetivo de avaliar a produtividade de dois genótipos de trigo de duplo propósito, BRS Tarumã e BRS Umbu, submetidos ao pastejo com vacas em lactação. O delineamento experimental foi o inteiramente ao acaso, com dois tratamentos (genótipos), três repetições (piquetes) e medidas repetidas no tempo (pastejos). Avaliaram-se a precocidade, a composição estrutural dos trigos, as produções de forragem e de biomassa de lâminas foliares, as taxas de acúmulo diário de forragem e de lâminas foliares, a taxa de lotação, as ofertas de forragem e de lâminas foliares, a eficiência de pastejo, o consumo aparente e a produção de grãos. O trigo mais precoce para produção de forragem foi o BRS Umbu. Houve diferença para a produção de forragem (3196 vs. 4143kg MS/ha) e de lâminas foliares (2281 vs. 3205kg MS/ha) para os genótipos BRS Umbu e BRS Tarumã, respectivamente. Valores similares foram encontrados para taxa de lotação (2,26UA/ha); eficiência de pastejo (52,26%), consumo aparente (2,91%) e produção de grãos (1716kg/ha). O genótipo BRS Tarumã é o mais indicado para o manejo de duplo propósito em condições de pastejo com vacas em lactação

    MSeqDR: A Centralized Knowledge Repository and Bioinformatics Web Resource to Facilitate Genomic Investigations in Mitochondrial Disease

    No full text
    MSeqDR is the Mitochondrial Disease Sequence Data Resource, a centralized and comprehensive genome and phenome bioinformatics resource built by the mitochondrial disease community to facilitate clinical diagnosis and research investigations of individual patient phenotypes, genomes, genes, and variants. A central Web portal (https://mseqdr.org) integrates community knowledge from expert-curated databases with genomic and phenotype data shared by clinicians and researchers. MSeqDR also functions as a centralized application server for Web-based tools to analyze data across both mitochondrial and nuclear DNA, including investigator-driven whole exome or genome dataset analyses through MSeqDR-Genesis. MSeqDR-GBrowse genome browser supports interactive genomic data exploration and visualization with custom tracks relevant to mtDNA variation and mitochondrial disease. MSeqDR-LSDB is a locus-specific database that currently manages 178 mitochondrial diseases, 1,363 genes associated with mitochondrial biology or disease, and 3,711 pathogenic variants in those genes. MSeqDR Disease Portal allows hierarchical tree-style disease exploration to evaluate their unique descriptions, phenotypes, and causative variants. Automated genomic data submission tools are provided that capture ClinVar compliant variant annotations. PhenoTips will be used for phenotypic data submission on deidentified patients using human phenotype ontology terminology. The development of a dynamic informed patient consent process to guide data access is underway to realize the full potential of these resources
    corecore