225 research outputs found

    Can the offshore energy sector be transformed to help the UK become a net-zero nation?

    Get PDF
    No abstract available

    Estimation of cement thermal properties through the three-phase model with application to geothermal wells

    Get PDF
    Geothermal energy has been used by mankind since ancient times. Given the limited geographical distribution of the most favorable resources, exploration efforts have more recently focused on unconventional geothermal systems targeting greater depths to reach sufficient temperatures. In these systems, geothermal well performance relies on efficient heat transfer between the working fluid, which is pumped from surface, and the underground rock. Most of the wells designed for such environments require that the casing strings used throughout the well construction process be cemented in place. The overall heat transfer around the wellbore may be optimized through accurate selection of cement recipes. This paper presents the application of a three-phase analytical model to estimate the cement thermal properties. The results show that cement recipes can be designed to enhance or minimize heat transfer around wellbore, extending the application of geothermal exploitation

    Experimental validation of multiphase flow models and testing of multiphase flow meters: A critical review of flow loops worldwide

    Get PDF
    Around the world, research into multiphase flow is performed by scientists with hugely diverse backgrounds: physicists, mathematicians and engineers from mechanical, nuclear, chemical, civil, petroleum, environmental and aerospace disciplines. Multiphase flow models are required to investigate the co-current or counter-current flow of different fluid phases under a wide range of pressure and temperature conditions and in several different configurations. To compliment this theoretical effort, measurements at controlled experimental conditions are required to verify multiphase flow models and assess their range of applicability, which has given rise to a large number of multiphase flow loops around the world. These flow loops are also used intensively to test and validate multiphase flow meters, which are devices for the in-line measurement of multiphase flow streams without separation of the phases. However, there are numerous multiphase flow varieties due to differences in pressure and temperature, fluids, flow regimes, pipe geometry, inclination and diameter, so a flow loop cannot represent all possible situations. Even when experiments in a given flow loop are believed to be sufficiently exhaustive for a specific study area, the real conditions encountered in the field tend to be very different from those recreated in the research facility. This paper presents a critical review of multiphase flow loops around the world, highlighting the pros and cons of each facility with regard to reproducing and monitoring different multiphase flow situations. The authors suggest a way forward for new developments in this area

    Can the offshore energy sector be transformed to help the UK become a net-zero nation?

    Get PDF
    No abstract available

    A systematic study of harnessing low-temperature geothermal energy from oil and gas reservoirs

    Get PDF
    Mature hydrocarbon fields co-produce significant volumes of water. As the produced water increases over the life of the field, the project's operating costs increase (due to greater water management expenditure), while the oil revenues decrease. Typically, these waste streams of water have temperatures of 65–150 °C. The combination of moderate temperatures and large water volumes may be suitable for electricity generation and/or district heating. Being able to capture the geothermal energy from existing hydrocarbon fields could extend their lifespan by delaying their economic cut-off point. In this paper, mature oil and gas reservoirs worldwide are critically reviewed, where waste heat recovery has already been tested, or its potential identified. A roadmap of screening criteria based on geological, reservoir, production and economic parameters is then proposed, to assess how, where and when low-temperature waste heat recovery is feasible. The roadmap is tested against the Villafortuna–Trecate oil field in Italy, where the aquifer not only provides pressure support to the reservoir, but also represents a natural, in-situ hydrothermal resource. The results suggest that a single-well could recover approximately 25 GWh of electric power over a 10-year period, with an installed capacity of 500 kW

    Liquid loading in gas wells: From core-scale transient measurements to coupled field-scale simulations

    Get PDF
    Liquid loading is a major operational constraint in mature gas fields around the world. It manifests itself as an increasing back pressure on the reservoir due to a rising liquid column in the well, which initially decreases deliverability, then ultimately causes the gas well to cease production. Theoretically, every gas well will experience this debilitating phenomenon in the latter stages of its producing life. In this paper, both laboratory experiments and numerical simulations are presented to shed more light on the physical process of liquid loading, with a focus on reservoir responses. On the one hand, core-flooding experimental setups of different scales were designed and constructed to investigate back pressure effects on transient flow through the near-wellbore region of the reservoir. On the other hand, the modelling of a gas well undergoing controlled flow and shut-in cycles was performed to validate core-scale observations at reservoir scale, using commercial integrated numerical software that connects a transient wellbore model to a transient reservoir model. The simulated transient characteristics of short-term downhole dynamics (e.g. liquid re-injection and co-current/counter-current flows) supported the U-shaped concept observed in the experiments. The detected temporal distribution of pore fluid pressure within the reservoir medium itself (referred to as the U-shaped pressure profile) was observed both experimentally at the core-scale and numerically at the reservoir-scale. This pressure distribution can be used to explain re-injection of the denser phases into the near-wellbore region of the reservoir

    An Integrated IGCC-CSS Design Course for Graduate Students in Petroleum Engineering

    Get PDF
    A new graduate course on CO2 Capture and Uses was offered for the first time at Texas A&M, Pet. Eng., in Fall 2008. 
A multidisciplinary team of instructors from the Pet. Eng. & Chem. Eng. departments was assembled to ensure the appropriate expertise.
The objective of the course is to let the students understand the need for / potential of Carbon Capture and Storage (CCS) & Enhanced Oil Recovery (EOR)

    Liquid loading in gas wells: experimental investigation of back pressure effects on the near-wellbore reservoir

    Get PDF
    A large-scale core-flooding experimental setup was designed and constructed to investigate the back pressure effects on transient flow through porous medium, and so mimic the physical process of liquid loading and reservoir response. Between initial and final steady-state flowing conditions, where inlet pressure was maintained at a constant level while initiating a transient pressure build up at the core sample end, an “U-shaped” temporal distribution of pore fluid pressure within the medium itself was observed, which is in direct contrast to the conventional reservoir pressure profile

    A microwave cavity resonator sensor for water-in-oil measurements

    Get PDF
    Online monitoring of Water-Liquid Ratio (WLR) in multiphase flow is key in petroleum production, processing and transportation. The usual practice in the field is to manually collect offline samples for laboratory analysis, which delays data availability and prevents real time intervention and optimization. A highly accurate and robust sensing method is needed for online measurements in the lower end of WLR range (0%–5%), especially for fiscal metering and custody transfer of crude oil, as well as to ensure adequate flow assurance prevention and remedial solutions. This requires a highly sensitive sensing principle along with a highly precise measurement instrument, packaged together in a sufficiently robust manner for use in the field. In this paper, a new sensing principle is proposed, based on the open-ended microwave cavity resonator and near wall surface perturbation, for non-intrusive measurement of WLR. In the proposed concept, the electromagnetic fringe field of a cylindrical cavity resonator is used to probe the liquid near the pipe wall. Two of the cylindrical cavity resonance modes, TM010 and TM011 are energized for measurements and the shift in the resonance frequency is used to estimate liquid permittivity and the WLR. Electromagnetic simulations in the microwave frequency range of 4 GHz to 7 GHz are used for proof-of-concept and sensitivity studies. A sensor prototype is fabricated and its functionality demonstrated with flowing oil-water mixtures in the WLR range of 0–5%. The frequency range of the proposed sensors is 4.4–4.6 GHz and 6.1–6.6 GHz for modes TM010 and TM011, respectively. The TM011 mode shows much higher sensitivity (41.6 MHz/WLR) than the TM010 mode (3.8 MHz/WLR). The proposed sensor consists of a 20 mm high cylinder, with a diameter of 30 mm and Poly-Ether-Ether-Ketone (PEEK) filler. The non-intrusiveness of the sensor, along with the high sensitivity in the resonance shift, makes it attractive for practical applications
    • …
    corecore