
Nature Precedings : doi:10.1038/npre.2008.2627.1 : Posted 10 Dec 2008

AN INTEGRATED IGCC-CSS DESIGN COURSE FOR GRADUATE STUDENTS IN PETROLEUM ENGINEERING

Gioia Falcone Behnam Jafarpour Maria Barrufet

Virtual Conference on Climate Change and CO2 Storage, 3rd December 2008

Summary

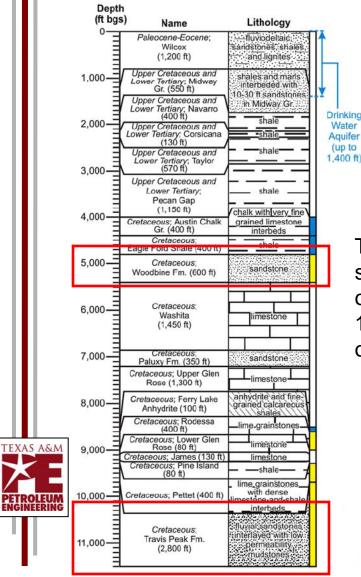
- Introduction to the course
- The design project
 - FutureGen field case
 - Workflow
- Lessons learnt & conclusions

Introduction to the course

- A new graduate course on CO₂ Capture and Uses was offered for the first time at Texas A&M, Pet. Eng., in Fall 2008.
- A multidisciplinary team of instructors from the Pet. Eng. & Chem. Eng. departments was assembled to ensure the appropriate expertise.
- The objective of the course is to let the students understand the need for / potential of Carbon Capture and Storage (CCS) & Enhanced Oil Recovery (EOR).

Course contents & multidisciplinary teamTopicInstructor (Prof.)

Course Overview and Purpose	Robert Lane, Maria Barrufet
Geological Screening and Site Characterization	Walter Ayers
Separation Aspect and Cost-Efficiency Analysis	Carl Laird
Boosting, Transportation, and Injection	Gioia Falcone
Injectivity and Well Design	Hisham Nasr-El-Din
Use of CO2 for EOR	David Schechter
Modeling Tools and Techniques, Leakage Pathways	Behnam Jafarpour
Economic and Regulatory Aspects	Christine Economides


The design project

The course includes a term project - the students design a CCS system based on data available from the FutureGen project (<u>www.futuregenalliance.org/</u>). The following steps are included in the design project:

- 1.Site characterisation
- 2.CO₂ capture & separation
- $3.CO_2$ boosting, transport and injection
- 4. Mass balance & numerical flow simulation
- 5.Risk, monitoring, regulations & economic evaluation

Site characterisation - Brazos, Texas

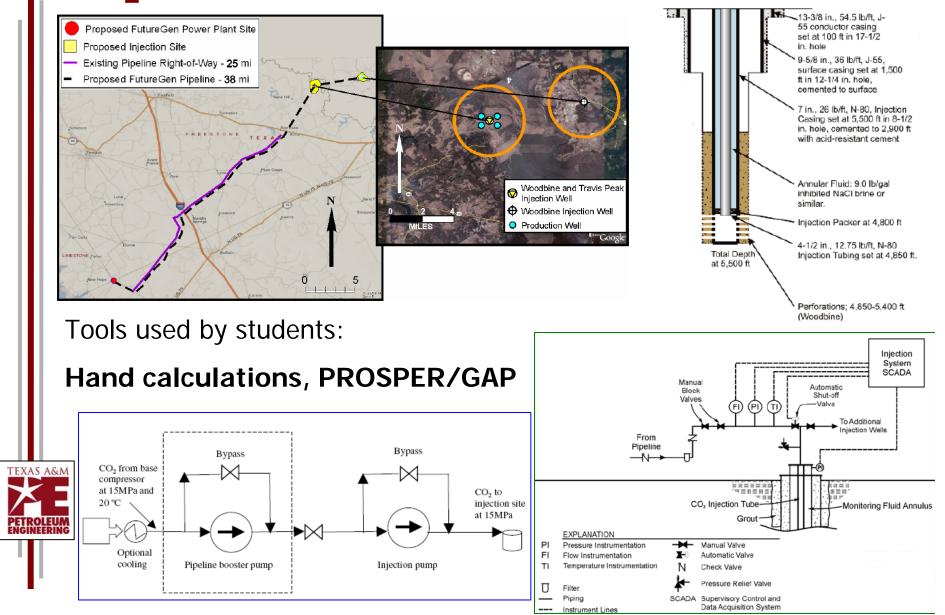
Parameter	Brazos Woodbine	Brazos Travis Peak
Depth to top of injection horizon (ft)	4800	9200
No. of wells	2	1
Flow split/well	45%	10%
Flow rate/well (lb/hr)	283,130	62,917
Max. injection pressure (psi)	3197	6114
Required injection pressure (psi)	2496	6114

The Woodbine formation is a 500-foot thick clean sandstone. For Lower Woodbine sandstones, porosity of 25%, with permeability of several hundreds md to 1,200 md. For Upper Woodbine sandstones, porosity of 25-30%, with permeability > 3,000 md.

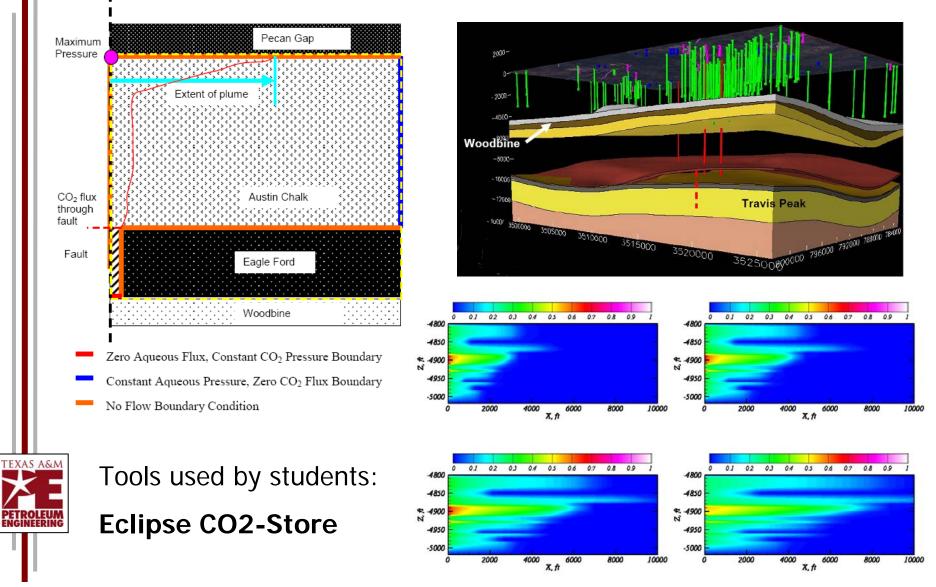
The Travis Peak formation, the optional secondary target sequestration formation, consists of 0.5 mile of stacked fluvial sandstones interbedded with low-permeability mudstones, comprising 800 to 900 feet of net sandstone, with porosity of 5-8%.

(FutureGen Project EIS, November 2007)

CO2 capture and separation


Post-combustion fuel gas CO conversion CO, capture separation Heat recovery steam generator Physical and chemical Steam turbine Gasifier absorption Gas turbine Capture efficiency Coal drying unit Tools used by students: Generator **ASPEN**, **ProMax** CO, pipeline Air separation unit Compressor

TEXAS A&M


PETROLEUM ENGINEERING

(<u>www.rwe.com</u> 2008)

CO₂ boosting, transportation & injection

Mass balance & numerical flow simulation

(FutureGen Allience, May 2007)

Gas saturation profiles at 5, 10, 20 and 50 yrs (Woodbine)

Conclusions

- With this new course, engineering students are offered a unique opportunity to learn about integrated IGCC-CCS systems.
- Conventional Pet. Eng. & Chem. Eng. skills and techniques fully complement an integrated approach to the contemporary energy scenario.
- A design project based on a real field case is ideal for scholarly purposes – we plan on using more field data as they become available.

AN INTEGRATED IGCC-CSS DESIGN COURSE FOR GRADUATE STUDENTS IN PETROLEUM ENGINEERING

Gioia Falcone Behnam Jafarpour Maria Barrufet

Virtual Conference on Climate Change and CO2 Storage, 3rd December 2008