27 research outputs found
Genetically Optimized Extended Kalman Filter for State of Health Estimation Based on Li-Ion Batteries Parameters
The state of health (SOH) is among the most important parameters to be monitored in lithium-ion batteries (LIB) because it is used to know the residual functionality in any condition of aging. The paper focuses on the application of the extended Kalman filter (EKF) for the identification of the parameters of a cell model, which are required for the correct estimation of the SOH of the cell. This article proposes a methodology for tuning the covariance matrices of the EKF by using an optimization process based on genetic algorithms (GA). GAs are able to solve the minimization problems for the non-linear functions, and they are better than other optimization algorithms such as gradient descent to avoid the local minimum. To validate the proposed method, the cell parameters obtained from the EKF are compared with a reference model, in which the parameters have been determined with proven procedures. This comparison is carried out with different cells and in the whole range of the cell’s SOH, with the aim of demonstrating that a single tuning procedure, based on the proposed GA process, is able to guarantee good accuracy in the estimation of the cell parameters at all stages of the cell’s life
Large Eddy Simulations of sediment entrainment induced by a lock-exchange gravity current
Large Eddy simulations of lock-exchange gravity currents propagating over a mobile reach are presented. The numerical setting allows to investigate the sediment pick up induced by the currents and to study the underlying mechanisms leading to sediment entrainment for different Grashof numbers and grain sizes. First, the velocity field and the bed shear-stress distribution are investigated, along with turbulent structures formed in the flow, before the current reaches the mobile bed. Then, during the propagation of the current above the erodible section of the bed the contour plots of the entrained material are pre- sented as well as the time evolution of the areas covered by the current and by the sediment at this section. The numerical outcomes are compared with experimental data showing a very good agreement. Overall, the study confirms that sediment pick up is prevalent at the head of the current where the strongest turbulence occurs. Further, above the mobile reach of the bed, settling process seems to be of minor importance, with the entrained material being advected downstream by the current. Additionally, the study shows that, although shear stress is the main mechanism that sets particles in motion, turbu- lent bursts as well as vertical velocity fluctuations are also necessary to counteract the falling velocity of the particles and maintain them into suspension. Finally, the analysis of the stability conditions of the current shows that, from one side, sediment concentration gives a negligible contribution to the stability of the front of the current and from the other side, the stability conditions provided by the current do not allow sediments to move into the ambient fluid
Spontaneous self-assembly of an unsymmetric trinuclear triangular copper(II) pyrazolate complex, [Cu3(μ3-OH)(μ-pz) 3(MeCOO)2(Hpz)] (Hpz = pyrazole). Synthesis, experimental and theoretical characterization, reactivity, and catalytic activity
The almost quantitative formation of the triangular trinuclear copper derivative [Cu3(μ3-OH)(μ-pz)3(MeCOO) 2(Hpz)] (1) (Hpz = pyrazole), has been simply achieved by adding Hpz to an ethanol solution of Cu(MeCOO)2·H2O. An X-ray molecular structure determination shows that 1 is completely unsymmetric and that trinuclear units result assembled in an extended bidimensional network formed through acetate bridges and hydrogen bonds. EPR and magnetic measurements are consistent with the presence of a single unpaired electron. Theoretical density functional calculations carried out for S = 1/2 provide a thorough description of the electronic structure of 1, allowing a detailed assignment of its UV-vis absorption spectrum. Compound 1 reacts with MeONa, yielding [Cu 3(μ3-OH)(μ-pz)3(MeCOO)(MeO)(Hpz)] (2) and [Cu3(μ3-OH)(μ-pz)3(MeO) 2(Hpz)] (3) through the substitution of one and two acetate ions, respectively, with MeO- ion(sS). The spontaneous self-assembly of the triangular trinuclear Cu3 moiety seems to occur only with pyrazole as can be inferred by the results obtained in the reactions of copper(II) acetate with some substituted pyrazoles leading to the formation of mononuclear [Cu(MeCOO)2(L)2] (4-8) and dinuclear [Cu(MeCOO) 2(L)]2 (9-11) (L = substituted pyrazole) compounds. Also the presence of acetate ions seems to play a leading role in determining the formation of the trinuclear triangular arrangement, as indicated by the formation of a mononuclear derivative, [Cu(CF3COO) 2(Hpz)]2 (compound 12), in the reaction of copper(II) trifluoroacetate with pyrazole. Compounds 1-3, as well as some other mono- and dinuclear copper(II)-substituted pyrazole complexes, have been tested as catalyst precursors in cyclopropanation reaction, observing the formation of products in a syn:anti ratio opposite that normally reported
Genetic algorithm for calibration and leakage identification in water distribution system
The paper introduces the development of a methodology for calibrating the simulation model of a water distribution system (WDS), based on a synergy between evolutionary algorithms (EAs) and the numerical modeling of WDSs. In particular, the implemented genetic algorithm (GA) allows the fine tuning, on one hand, of pipe roughness coefficients (depending on their material) and, on the other, of leakage characteristics (parameters and spatial distribution). A case study is also illustrated
Photocatalytic, spectroscopic and transport properties of lanthanide-doped TiO2 nanocrystals
The photocatalytic properties of the anatase form of nanocrystalline TiO2 doped with lanthanide ions (Eu3+,Sm3+ and Er3+), obtained by a sol\u2013gel preparation method, are studied by means of the degradation of methylene blue. It is observed that the presence of Sm3+ ion as a dopant significantly improves the photocatalytic activity of anatase TiO2 with respect to the Eu3+ or Er3+ ions.For the understanding of such a catalytic process the charge transport in these systems is studied by an appropriate Monte Carlo simulation which includes phonons, charged impurities and traps. The obtained results evidence the important role of the traps for the transit of the electrons in the systems investigated here. They decrease the diffusion coefficient by about three orders of magnitude with respect to the bulk, from which it is possible to obtain a simple estimate of the reaction rate in agreement with experimental results. All the lanthanide-doped samples show a strong luminescence in the visible region. The emission bands are affected by a notable inhomogeneous broadening, indicating a high disorder of the crystalline environment of the lanthanide ions in the titania host