29 research outputs found

    BDNF delivery strategies in an experimental model of temporal lobe epilepsy.

    Get PDF
    Neurotrophic factors (NTFs) have been reported to play opposite, pro- and/or anti-epileptic effects in experimental models. Some NTFs favor epileptogenesis or progression of epilepsy whereas others oppose these processes. Still other NTFs, including Brain-Derived Neurotrophic Factor (BDNF), can exert both positive and negative effects. Moreover, BDNF has been clearly shown to be involved in all the cellular and tissue changes that occur during epileptogenesis. To get further insight in the involvement of BDNF in epilepsy and, on this basis, to develop new therapeutic strategies, there is a need to develop new, advanced tools for the modulation of the BDNF signal within defined brain regions. Therefore, the aim of this thesis was to develop new delivery systems to block or to enhance the BDNF signal. Specifically, the thesis deals the investigation of the validity of BDNF as a therapeutic target, using advanced tools to down regulate BDNF expression (Herpes simplex virus-1 based amplicon vectors) and to continuously secrete it [encapsulated cell biodelivery (ECB) devices]. Two amplicon-based silencing strategies have been developed. The first, antisense (AS), targets and degrades the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription (CT) technology, directly represses the BDNF gene. In vitro (cell lines) and in vivo (stereotaxic injection in the epileptic hippocampus) experiments demonstrated a reliable effect of amplicon vectors in knocking down gene expression. However, whereas the CT-BDNF strategy proved effective only in vitro, the AS-BDNF amplicon vector proved effective both in vitro and in vivo, knocking down efficiently BDNF protein levels in the injected hippocampus at different time points. The antisense strategy seems therefore a better choice for silencing BDNF expression in vivo. For a prolonged administration of BDNF, BDNF-producing cells encapsulated in ECB devices have been tested in a rat model of Temporal Lobe Epilepsy. These devices, implanted bilaterally in the hippocampus of chronically epileptic animals, proved capable to significantly decrease the frequency of spontaneous generalized seizures. These new tools and experiments help to further elucidate the role of BDNF in epilepsy and provide an initial proof-of-concept for a new, promising therapeutic approach

    Involvement of p38 MAPK in Synaptic Function and Dysfunction

    Get PDF
    Many studies have revealed a central role of p38 MAPK in neuronal plasticity and the regulation of long-term changes in synaptic efficacy, such as long-term potentiation (LTP) and long-term depression (LTD). However, p38 MAPK is classically known as a responsive element to stress stimuli, including neuroinflammation. Specific to the pathophysiology of Alzheimer's disease (AD), several studies have shown that the p38 MAPK cascade is activated either in response to the Aβ peptide or in the presence of tauopathies. Here, we describe the role of p38 MAPK in the regulation of synaptic plasticity and its implication in an animal model of neurodegeneration. In particular, recent evidence suggests the p38 MAPK α isoform as a potential neurotherapeutic target, and specific inhibitors have been developed and have proven to be effective in ameliorating synaptic and memory deficits in AD mouse models

    Microglial extracellular vesicles induce Alzheimer’s diseaserelated cortico-hippocampal network dysfunction.

    Get PDF
    β-Amyloid is one of the main pathological hallmarks of Alzheimer’s disease and plays a major role in synaptic dysfunction. It has been demonstrated that β-amyloid can elicit aberrant excitatory activity in cortical-hippocampal networks, which is associated with behavioural abnormalities. However, the mechanism of the spreading of β-amyloid action within a specific circuitry has not been elucidated yet. We have previously demonstrated that the motion of microglia-derived large extracellular vesicles carrying β-amyloid, at the neuronal surface, is crucial for the initiation and propagation of synaptic dysfunction along the entorhinal–hippocampal circuit. Here, using chronic EEG recordings, we show that a single injection of extracellular vesicles carrying β-amyloid into the mouse entorhinal cortex could trigger alterations in the cortical and hippocampal activity that are reminiscent of those found in Alzheimer’s disease mouse models and human patients. The development of EEG abnormalities was associated with progressive memory impairment as assessed by an associative (object-place context recognition) and non-associative (object recognition) task. Importantly, when the motility of extracellular vesicles, carrying β-amyloid, was inhibited, the effect on network stability and memory function was significantly reduced. Our model proposes a new biological mechanism based on the extracellular vesicles–mediated progression of β-amyloid pathology and offers the opportunity to test pharmacological treatments targeting the early stages of Alzheimer’s disease

    Smell and Taste in Severe CoViD-19: Self-Reported vs. Testing

    Get PDF
    One of the most striking reported symptoms in CoViD-19 is loss of smell and taste. The frequency of these impairments and their specificity as a potential central nervous system function biomarker are of great interest as a diagnostic clue for CoViD-19 infection as opposed to other similar symptomatologic diseases and because of their implication in viral pathogenesis. Here severe CoViD-19 was investigated by comparing self-report vs. testing of smell and taste, thus the objective severity of olfactory impairment and their possible correlation with other symptoms. Because a significant discrepancy between smell and taste testing vs. self-report results (p < 0.001) emerges in our result, we performed a statistical analysis highlighting disagreement among normosmia (p < 0.05), hyposmia, severe hyposmia, and anosmia (p < 0.001) and, in hypogeusia and severe hypogeusia, while no differences are observed in normogeusia and ageusia. Therefore, we analyzed the olfactory threshold by an objective test revealing the distribution of hyposmic (34%), severe hyposmic (48%), and anosmic (13%) patients in severe CoViD-19. In severe CoViD-19 patients, taste is lost in 4.3% of normosmic individuals, 31.9% of hyposmic individuals, 46.8% of severe hyposmic individuals, and 17% of anosmic individuals. Moreover, 95% of 100 CoViD-19 patients objectively tested were affected by smell dysfunction, while 47% were affected by taste dysfunction. Furthermore, analysis by objective testing also highlighted that the severity of smell dysfunction in CoViD-19 subjects did not correlate with age and sex. In conclusion, we report by objective testing that the majority of CoViD-19 patients report severe anosmia, that most of the subjects have olfactory impairment rather than taste impairment, and, finally, that the olfactory impairment correlate with symptom onset and hospitalization (p < 0.05). Patients who exhibit severe olfactory impairment had been hospitalized for about a week from symptom onset; double time has taken place in subjects with normosmia. Our results may be limited by the relatively small number of study participants, but these suggest by objective testing that hyposmia, severe hyposmia, and anosmia may relate directly to infection severity and neurological damage. The smell test assessment could be a potential screening symptom that might contribute to the decision to test suspected cases or guide quarantine instructions, further therapeutic approach, and evaluation of neurological damage

    MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy - Comparison with human epileptic samples

    Get PDF
    The identification of biomarkers of the transformation of normal to epileptic tissue would help to stratify patients at risk of epilepsy following brain injury, and inform new treatment strategies. MicroRNAs (miRNAs) are an attractive option in this direction. In this study, miRNA microarrays were performed on laser-microdissected hippocampal granule cell layer (GCL) and on plasma, at different time points in the development of pilocarpine-induced epilepsy in the rat: latency, first spontaneous seizure and chronic epileptic phase. Sixty-three miRNAs were differentially expressed in the GCL when considering all time points. Three main clusters were identified that separated the control and chronic phase groups from the latency group and from the first spontaneous seizure group. MiRNAs from rats in the chronic phase were compared to those obtained from the laser-microdissected GCL of epileptic patients, identifying several miRNAs (miR-21-5p, miR-23a-5p, miR-146a-5p and miR- 181c-5p) that were up-regulated in both human and rat epileptic tissue. Analysis of plasma samples revealed different levels between control and pilocarpine-treated animals for 27 miRNAs. Two main clusters were identified that segregated controls from all other groups. Those miRNAs that are altered in plasma before the first spontaneous seizure, like miR-9a-3p, may be proposed as putative biomarkers of epileptogenesis

    New tools for epilepsy therapy

    No full text
    One third of the epilepsies are refractory to conventional antiepileptic drugs (AEDs) and, therefore, identification of new therapies is highly needed. Here, we briefly describe two approaches, direct cell grafting and gene therapy, that may represent alternatives to conventional drugs for the treatment of focal epilepsies. In addition, we discuss more in detail some new tools, cell based-biodelivery systems (encapsulated cell biodelivery (ECB) devices) and new generation gene therapy vectors, which may help in the progress toward clinical translation. The field is advancing rapidly, and there is optimism that cell and/or gene therapy strategies will soon be ready for testing in drug-resistant epileptic patients

    New Tools for Epilepsy Therapy

    No full text
    One third of the epilepsies are refractory to conventional antiepileptic drugs (AEDs) and, therefore, identification of new therapies is highly needed. Here, we briefly describe two approaches, direct cell grafting and gene therapy, that may represent alternatives to conventional drugs for the treatment of focal epilepsies. In addition, we discuss more in detail some new tools, cell based-biodelivery systems (encapsulated cell biodelivery (ECB) devices) and new generation gene therapy vectors, which may help in the progress toward clinical translation. The field is advancing rapidly, and there is optimism that cell and/or gene therapy strategies will soon be ready for testing in drug-resistant epileptic patients

    Non-Canonical Roles of Tau and Their Contribution to Synaptic Dysfunction

    No full text
    Tau plays a central role in a group of neurodegenerative disorders collectively named tauopathies. Despite the wide range of diverse symptoms at the onset and during the progression of the pathology, all tauopathies share two common hallmarks, namely the misfolding and aggregation of Tau protein and progressive synaptic dysfunctions. Tau aggregation correlates with cognitive decline and behavioural impairment. The mechanistic link between Tau misfolding and the synaptic dysfunction is still unknown, but this correlation is well established in the human brain and also in tauopathy mouse models. At the onset of the pathology, Tau undergoes post-translational modifications (PTMs) inducing the detachment from the cytoskeleton and its release in the cytoplasm as a soluble monomer. In this condition, the physiological enrichment in the axon is definitely disrupted, resulting in Tau relocalization in the cell soma and in dendrites. Subsequently, Tau aggregates into toxic oligomers and amyloidogenic forms that disrupt synaptic homeostasis and function, resulting in neuronal degeneration. The involvement of Tau in synaptic transmission alteration in tauopathies has been extensively reviewed. Here, we will focus on non-canonical Tau functions mediating synapse dysfunction
    corecore