9 research outputs found

    Asynchronous release sites align with NMDA receptors in mouse hippocampal synapses

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Li, S., Raychaudhuri, S., Lee, S. A., Brockmann, M. M., Wang, J., Kusick, G., Prater, C., Syed, S., Falahati, H., Ramos, R., Bartol, T. M., Hosy, E., & Watanabe, S. Asynchronous release sites align with NMDA receptors in mouse hippocampal synapses. Nature Communications, 12(1), (2021): 677, https://doi.org/10.1038/s41467-021-21004-x.Neurotransmitter is released synchronously and asynchronously following an action potential. Our recent study indicates that the release sites of these two phases are segregated within an active zone, with asynchronous release sites enriched near the center in mouse hippocampal synapses. Here we demonstrate that synchronous and asynchronous release sites are aligned with AMPA receptor and NMDA receptor clusters, respectively. Computational simulations indicate that this spatial and temporal arrangement of release can lead to maximal membrane depolarization through AMPA receptors, alleviating the pore-blocking magnesium leading to greater activation of NMDA receptors. Together, these results suggest that release sites are likely organized to activate NMDA receptors efficiently.e also thank the Marine Biological Laboratory and their Neurobiology course for supporting the initial set of experiments (course supported by National Institutes of Health grant R25NS063307). S.W. and this work were supported by start-up funds from the Johns Hopkins University School of Medicine, Johns Hopkins Discovery funds, and the National Science Foundation (1727260), the National Institutes of Health (1DP2 NS111133-01 and 1R01 NS105810-01A1) awarded to S.W. S.W. is an Alfred P. Sloan fellow, McKnight Foundation Scholar, and Klingenstein and Simons Foundation scholar. G.K. was supported by a grant from the National Institutes of Health to the Biochemistry, Cellular and Molecular Biology Program of the Johns Hopkins University School of Medicine (T32 GM007445) and is a National Science Foundation Graduate Research Fellow (2016217537). E.H. and T.M.B. are supported by CRCNS-NIH-ANR grant AMPAR-T. The EM ICE high-pressure freezer was purchased partly with funds from an equipment grant from the National Institutes of Health (S10RR026445) awarded to Scot C Kuo

    A Mechanistic Study of Complex Biological Phenomena: From Membrane-less Organelle Assembly to Cell Cycle Regulation

    No full text
    This work is an effort to disentangle different mechanisms that drive complex biological phenomena, from the assembly of membrane-less organelles and their spatiotemporal regulation to the regulation of cell cycle events. To do so, we have taken advantage of the differential sensitivity of distinct mechanisms to temperature by utilizing a microfluidics-based temperature assay, in combination with quantitative live imaging and genetic approaches, in early Drosophila embryos. Our results indicate that the quintessential membrane-less organelle, the nucleolus, forms through two independent mechanisms, namely active assembly and thermodynamically-driven phase separation. These two independent mechanisms are coordinated by rDNA to ensure that the organelle forms at the right time and the right place. Transcription of rRNA spatiotemporally regulates the phase separation by overcoming the initial nucleation step in the formation of these assemblies. rDNA is also necessary for the formation of active assemblies, and therefore can be considered as a common coordinator of the active and thermodynamic mechanisms of the nucleolus assembly. Finally, by using a similar temperature-base assay we are able uncouple various cell cycle events and show that while entry into prophase can occur independent of CDK1 activity, initiation of prometaphase always coincides with the activation of CDK1

    De novo nucleolus formation in fly embryos

    No full text
    First time nucleolus formation is depicted wild type early fly embryos. Nucleolus is absent in early embryos, and forms for the first time at nuclear cycle 13 (bright foci in the nuclei). tagRFP-Fibrillarin is used as the marker of the nucleolus. Nuclei at nuclear cycles 10 to 14 are shown. Images are obtained using Leica SP5, and are maximum projected, 82 x 41 microns

    Nuclear divisions in early fly embryos

    No full text
    Nuclear division is depicted in wild type fly embryos at nuclear cycles 10-14. H2Av-RFP marks the chromosomes and is shown in magenta, and Jupiter-GFP depicts the microtubules and is shown in yellow. Images were obtained every 10s with Leica SP5 confocal microscope. Images are maximum projected, and 82 x 41 microns in size
    corecore