6 research outputs found

    Genetic variation in the interleukin-28B gene is associated with spontaneous clearance and progression of hepatitis C virus in Moroccan patients

    Get PDF
    Genetic variation in the IL28B gene has been strongly associated with treatment outcomes, spontaneous clearance and progression of the hepatitis C virus infection (HCV). The aim of the present study was to investigate the role of polymorphisms at this locus with progression and outcome of HCV infection in a Moroccan population. We analyzed a cohort of 438 individuals among them 232 patients with persistent HCV infection, of whom 115 patients had mild chronic hepatitis and 117 had advanced liver disease (cirrhosis and hepatocellular carcinoma), 68 individuals who had naturally cleared HCV and 138 healthy subjects. The IL28B SNPs rs12979860 and rs8099917 were genotyped using a TaqMan 5' allelic discrimination assay. The protective rs12979860-C and rs8099917-T alleles were more common in subjects with spontaneous clearance (77.9% vs 55.2%; p = 0.00001 and 95.6% vs 83.2%; p = 0.0025, respectively). Individuals with clearance were 4.69 (95% CI, 1.99-11.07) times more likely to have the C/C genotype for rs12979860 polymorphism (p = 0.0017) and 3.55 (95% CI, 0.19-66.89) times more likely to have the T/T genotype at rs8099917. Patients with advanced liver disease carried the rs12979860-T/T genotype more frequently than patients with mild chronic hepatitis C (OR = 1.89; 95% CI, 0.99-3.61; p = 0.0532) and this risk was even more pronounced when we compared them with healthy controls (OR = 4.27; 95% CI, 2.08-8.76; p = 0.0005). The rs8099917-G allele was also associated with advanced liver disease (OR = 2.34; 95% CI, 1.40-3.93; p = 0.0100). In the Moroccan population, polymorphisms near the IL28B gene play a role both in spontaneous clearance and progression of HCV infection

    Development of Conformational Antibodies to Detect Bcl-xL's Amyloid Aggregates in Metal-Induced Apoptotic Neuroblastoma Cells

    No full text
    International audienceBcl-xL, a member of the Bcl-2 family, is a pro-survival protein involved in apoptosis regulation. We have previously reported the ability of Bcl-xL to form various types of fibers, from native to amyloid conformations. Here, we have mimicked the effect of apoptosis-induced caspase activity on Bcl-xL by limited proteolysis using trypsin. We show that cleaved Bcl-xL (Delta N-Bcl-xL) forms fibers that exhibit the features of amyloid structures (BclxLcf37). Moreover, three monoclonal antibodies (mAbs), produced by mouse immunization and directed against Delta N-Bcl-xL or Bcl-xL fibers, were selected and characterized. Our results show that these mAbs specifically target Delta N-Bcl-xL in amyloid fibers in vitro. Upon metal-stress-induced apoptosis, these mAbs are able to detect the presence of Bcl-xL in amyloid aggregates in neuroblastoma SH-SY5Y cell lines. In conclusion, these specific mAbs directed against amyloidogenic conformations of Bcl-xL constitute promising tools for studying, in vitro and in cellulo, the contribution of Bcl-xL in apoptosis. These mAbs may further help in developing new diagnostics and therapies, considering Bcl-xL as a strategic target for treating brain lesions relevant to stroke and neurodegenerative diseases
    corecore