142 research outputs found

    How Can Microarrays Unlock Asthma?

    Get PDF
    Asthma is a complex disease regulated by the interplay of a large number of underlying mechanisms which contribute to the overall pathology. Despite various breakthroughs identifying genes related to asthma, our understanding of the importance of the genetic background remains limited. Although current therapies for asthma are relatively effective, subpopulations of asthmatics do not respond to these regimens. By unlocking the role of these underlying mechanisms, a source of novel and more effective treatments may be identified. In the new age of high-throughput technologies, gene-expression microarrays provide a quick and effective method of identifying novel genes and pathways, which would be impossible to discover using an individual gene screening approach. In this review we follow the history of expression microarray technologies and describe their contributions to advancing our current knowledge and understanding of asthma pathology

    Responses of retinal and brain microvasculature to streptozotocin induced diabetes revealed by global expression profiling

    Get PDF
    This study aims to determine the effects of diabetes in the retinal and brain microvasculature through gene expression profiling. Twelve male Wistar rats were randomly divided into two groups: streptozotocin-induced diabetic rats and time-matched nondiabetic rats. The retinal microvessels (RMVs) and brain microvessels (BMVs) were mechanically isolated from individual rats. Differentially expressed genes (DEGs) in diabetic and nondiabetic microvessels were identified by cDNA microarrays analysis. In RMVs, we identified 43 DEGs, of which 20 were upregulated while 23 were downregulated by diabetes. In BMVs, 35 genes DEGs were identified, of which 22 were upregulated and 13 were downregulated by diabetes. Altered expression of the Nars, Gars, Mars, Iars, Yars, Bcl2, Nqo1, NR4A3, Gpd1, Stc1, Tsc22d3, Tnfrsf21 mRNA as observed in the microarray analyses, was confirmed by quantitative RT-PCR. The aminoacyl-tRNA synthetases (aaRSs) pathway in RMVs was significantly overrepresented as compared to BMVs. Our study demonstrates for the first time that in the brain microvasculature multiple compensatory mechanisms exists, serving to protect brain tissue from diabetic insults, whereas these mechanisms are not activated in the retinal microvasculature. This provides new insights as to why brain microvasculature is less susceptible to diabetes.</p

    Stabilization of Black Cotton Soil using Lime, Coir Fiber & Rice Husk

    Get PDF
    Because of their low bearing capacity, the expansive black cotton soils' high swelling and shrinking characteristics have posed numerous challenges to construction projects. When subjected to varying levels of moisture, black cotton soil expands and contracts rapidly. As a result, stabilising the soil is necessary to address these issues. Rice Husk Ash (RHA), Cori Fiber, and Lime are being tested in this study to see if they can act as a stabilising material in the expansive black cotton soil. The impact of RHA, CF, and LIME on the expansive soil's index and engineering properties was studied in the lab. Coir fibre concentration is 1.5 percent, lime is 5 percent by weight of dry soil, and RHA is mixed in at a ratio of 20 percent. The virgin soil sample is first tested for specific gravity and grain size distribution. With and without these admixtures soil's index properties like its plastic limit, liquid limit and shrinkage limit and its strength properties like its California Bearing Ratio, Unconfined Compressive Strength tests are discovered. According to the test results, a combination of 5 percent lime and 1.5 percent coir fibre yielded the strongest soil and best index properties

    Sputum microbiome profiling in COPD:beyond singular pathogen detection

    Get PDF
    Culture-independent microbial sequencing techniques have revealed that the respiratory tract harbours a complex microbiome not detectable by conventional culturing methods. The contribution of the microbiome to chronic obstructive pulmonary disease (COPD) pathobiology and the potential for microbiome-based clinical biomarkers in COPD are still in the early phases of investigation. Sputum is an easily obtainable sample and has provided a wealth of information on COPD pathobiology, and thus has been a preferred sample type for microbiome studies. Although the sputum microbiome likely reflects the respiratory microbiome only in part, there is increasing evidence that microbial community structure and diversity are associated with disease severity and clinical outcomes, both in stable COPD and during the exacerbations. Current evidence has been limited to mainly cross-sectional studies using 16S rRNA gene sequencing, attempting to answer the question 'who is there?' Longitudinal studies using standardised protocols are needed to answer outstanding questions including differences between sputum sampling techniques. Further, with advancing technologies, microbiome studies are shifting beyond the examination of the 16S rRNA gene, to include whole metagenome and metatranscriptome sequencing, as well as metabolome characterisation. Despite being technically more challenging, whole-genome profiling and metabolomics can address the questions 'what can they do?' and 'what are they doing?' This review provides an overview of the basic principles of high-throughput microbiome sequencing techniques, current literature on sputum microbiome profiling in COPD, and a discussion of the associated limitations and future perspectives

    AGER expression and alternative splicing in bronchial biopsies of smokers and never smokers

    Get PDF
    Abstract Cigarette smoking is one of the major risk factors for the development of chronic obstructive pulmonary disease (COPD). Evidence is accumulating that Receptor for Advanced Glycation-End products (RAGE)-signaling is a key pathway in the pathophysiology of COPD. To date, it is unknown how smoking affects RAGE expression. In the current study, we investigated the effect of smoking on AGER, the gene encoding RAGE, expression and on alternative splicing of AGER. To this end, we conducted RNA-Seq on bronchial biopsies for asymptomatic smokers (n = 36) and never smokers (n = 40). Total AGER gene expression was accessed using DESeq2, while alternative splicing was investigated by measuring the number of specific split reads spanning exon-exon junctions and the total split reads. One of the major isoforms of RAGE is endogenous soluble (es) RAGE, an anti-inflammatory decoy receptor, making up for approximately 10% of the total amount of soluble (s)RAGE. We found that smokers show decreased total gene expression of AGER in bronchial biopsies, while the relative abundance of the esRAGE isoform is increased. Furthermore, no difference in the serum levels of total sRAGE were observed between smokers and non-smokers. Our data indicates that smoking initiates a protective anti-inflammatory mechanism with decreased expression of the pro-inflammatory gene AGER and increased relative abundance of the anti-inflammatory isoform esRAGE

    High miR203a-3p and miR-375 expression in the airways of smokers with and without COPD

    Get PDF
    Smoking is a leading cause of chronic obstructive pulmonary disease (COPD). It is known to have a significant impact on gene expression and (inflammatory) cell populations in the airways involved in COPD pathogenesis. In this study, we investigated the impact of smoking on the expression of miRNAs in healthy and COPD individuals. We aimed to elucidate the overall smoking-induced miRNA changes and those specific to COPD. In addition, we investigated the downstream effects on regulatory gene expression and the correlation to cellular composition. We performed a genome-wide miRNA expression analysis on a dataset of 40 current- and 22 ex-smoking COPD patients and a dataset of 35 current- and 38 non-smoking respiratory healthy controls and validated the results in an independent dataset. miRNA expression was then correlated with mRNA expression in the same patients to assess potential regulatory effects of the miRNAs. Finally, cellular deconvolution analysis was used to relate miRNAs changes to specific cell populations. Current smoking was associated with increased expression of three miRNAs in the COPD patients and 18 miRNAs in the asymptomatic smokers compared to respiratory healthy controls. In comparison, four miRNAs were lower expressed with current smoking in asymptomatic controls. Two of the three smoking-related miRNAs in COPD, miR-203a-3p and miR-375, were also higher expressed with current smoking in COPD patients and the asymptomatic controls. The other smoking-related miRNA in COPD patients, i.e. miR-31-3p, was not present in the respiratory healthy control dataset. miRNA-mRNA correlations demonstrated that miR-203a-3p, miR-375 and also miR-31-3p expression were negatively associated with genes involved in pro-inflammatory pathways and positively associated with genes involved in the xenobiotic pathway. Cellular deconvolution showed that higher levels of miR-203a-3p were associated with higher proportions of proliferating-basal cells and secretory (club and goblet) cells and lower levels of fibroblasts, luminal macrophages, endothelial cells, B-cells, amongst other cell types. MiR-375 expression was associated with lower levels of secretory cells, ionocytes and submucosal cells, but higher levels of endothelial cells, smooth muscle cells, and mast cells, amongst other cell types. In conclusion, we identified two smoking-induced miRNAs (miR-375 and miR-203a-3p) that play a role in regulating inflammation and detoxification pathways, regardless of the presence or absence of COPD. Additionally, in patients with COPD, we identified miR-31-3p as a miRNA induced by smoking. Our identified miRNAs should be studied further to unravel which smoking-induced inflammatory mechanisms are reactive and which are involved in COPD pathogenesis

    CORRECTION

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung with feweffective therapeutic options. Structural remodelling of the extracellular matrix [i.e. collagen cross-linkingmediated by the lysyl oxidase (LO) family of enzymes (LOX, LOXL1-4)] might contribute to disease pathogenesis and represent a therapeutic target. This study aimed to further our understanding of the mechanisms by which LO inhibitors might improve lung fibrosis. Lung tissues from IPF and non-IPF subjects were examined for collagen structure (second harmonic generation imaging) and LO gene (microarray analysis) and protein (immunohistochemistry and western blotting) levels. Functional effects (collagen structure and tissue stiffness using atomic force microscopy) of LO inhibitors on collagen remodelling were examined in two models, collagen hydrogels and decellularized human lung matrices. LOXL1/LOXL2 gene expression and protein levels were increased in IPF versus non-IPF. Increased collagen fibril thickness in IPF versus non-IPF lung tissues correlated with increased LOXL1/LOXL2, and decreased LOX, protein expression. beta-Aminoproprionitrile (beta-APN; pan-LO inhibitor) but not Compound A (LOXL2-specific inhibitor) interfered with transforming growth factor-beta-induced collagen remodelling in both models. The beta-APN treatment group was tested further, and beta-APN was found to interfere with stiffening in the decellularized matrix model. LOXL1 activity might drive collagen remodelling in IPF lungs. The interrelationship between collagen structural remodelling and LOs is disrupted in IPF lungs. Inhibition of LO activity alleviates fibrosis by limiting fibrillar collagen cross-linking, thereby potentially impeding the formation of a pathological microenvironment in IPF

    Angiogenic regulatory influence of extracellular matrix deposited by resting state asthmatic and non-asthmatic airway smooth muscle cells is similar

    Get PDF
    The extracellular matrix (ECM) is the tissue microenvironment that regulates the characteristics of stromal and systemic cells to control processes such as inflammation and angiogenesis. Despite ongoing anti‐inflammatory treatment, low levels of inflammation exist in the airways in asthma, which alters ECM deposition by airway smooth muscle (ASM) cells. The altered ECM causes aberrant behaviour of cells, such as endothelial cells, in the airway tissue. We therefore sought to characterize the composition and angiogenic potential of the ECM deposited by asthmatic and non‐asthmatic ASM. After 72 hours under non‐stimulated conditions, the ECM deposited by primary human asthmatic ASM cells was equal in total protein, collagen I, III and fibronectin content to that from non‐asthmatic ASM cells. Further, the matrices of non‐asthmatic and asthmatic ASM cells were equivalent in regulating the growth, activity, attachment and migration of primary human umbilical vein endothelial cells (HUVECs). Under basal conditions, asthmatic and non‐asthmatic ASM cells intrinsically deposit an ECM of equivalent composition and angiogenic potential. Previous findings indicate that dysregulation of the airway ECM is driven even by low levels of inflammatory provocation. This study suggests the need for more effective anti‐inflammatory therapies in asthma to maintain the airway ECM and regulate ECM‐mediated aberrant angiogenesis

    Smoking increases expression of the SARS-CoV-2 spike protein-binding long ACE2 isoform in bronchial epithelium

    Get PDF
    After more than two years the COVID-19 pandemic, that is caused by infection with the respiratory SARS-CoV-2 virus, is still ongoing. The risk to develop severe COVID-19 upon SARS-CoV-2 infection is increased in individuals with a high age, high body mass index, and who are smoking. The SARS-CoV-2 virus infects cells of the upper respiratory tract by entering these cells upon binding to the Angiotensin-converting enzyme 2 (ACE2) receptor. ACE2 is expressed in various cell types in the lung but the expression is especially high in goblet and ciliated cells. Recently, it was shown that next to its full-length isoform, ACE2 also has a short isoform. The short isoform is unable to bind SARS-CoV-2 and does not facilitate viral entry. In the current study we investigated whether active cigarette smoking increases the expression of the long or the short ACE2 isoform. We showed that in active smokers the expression of the long, active isoform, but not the short isoform of ACE2 is higher compared to never smokers. Additionally, it was shown that the expression of especially the long, active isoform of ACE2 was associated with secretory, club and goblet epithelial cells. This study increases our understanding of why current smokers are more susceptible to SARS-CoV-2 infection, in addition to the already established increased risk to develop severe COVID-19.</p
    corecore