38 research outputs found

    Compositional studies of primitive asteroids

    Get PDF
    The aqueous alteration history in the solar system are studied through acquiring additional CCD reflectance spectra in the blue-UV through near-IR spectral region and analyzing these spectra for information about iron oxides in phyllosilicates identified in the CM and CI carbonaceous chondrites. Emphasis is on the main-belt and Cybele primitive asteroids, as these asteroids show spectral diversity and are also spectral analogues for known meteorite samples. The porphyrin bands found in organics near 0.4 micron is also sought

    Spectral reflectance curves of the planet Mercury.

    Get PDF
    Thesis. 1975. M.S.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences.Includes bibliographical references.M.S

    Iron oxide bands in the visible and near-infrared reflectance spectra of primitive asteroids

    Get PDF
    High resolution reflectance spectra of primitive asteroids (C, P, and D class and associated subclasses) have commonly revealed an absorption feature centered at 0.7 microns attributed to an Fe(2+)-Fe(3+) charge transfer transition in iron oxides and/or oxidized iron in phyllosilicates. A smaller feature identified at 0.43 microns has been attributed to an Fe(3+) spin-forbidden transition in iron oxides. In the spectra of the two main-belt primitive asteroids 368 Haidea (D) and 877 Walkure (F), weak absorption features which were centered near the location of 0.60-0.65 microns and 0.80-0.90 microns prompted a search for features at these wavelengths and an attempt to identify their origin(s). The CCD reflectance spectra obtained between 1982-1992 were reviewed for similar absorption features located near these wavelengths. The spectra of asteroids in which these absorption features have been identified are shown. These spectra are plotted in order of increasing heliocentric distance. No division of the asteroids by class has been attempted here (although the absence of these features in the anhydrous S-class asteroids, many of which have presumably undergone full heating and differentiation should be noted). For this study, each spectrum was treated as a continuum with discrete absorption features superimposed on it. For each object, a linear least squares fit to the data points defined a simple linear continuum. The linear continuum was then divided into each spectrum, thus removing the sloped continuum and permitting the intercomparison of residual spectral features

    Astronomical Observations of Volatiles on Asteroids

    Full text link
    We have long known that water and hydroxyl are important components in meteorites and asteroids. However, in the time since the publication of Asteroids III, evolution of astronomical instrumentation, laboratory capabilities, and theoretical models have led to great advances in our understanding of H2O/OH on small bodies, and spacecraft observations of the Moon and Vesta have important implications for our interpretations of the asteroidal population. We begin this chapter with the importance of water/OH in asteroids, after which we will discuss their spectral features throughout the visible and near-infrared. We continue with an overview of the findings in meteorites and asteroids, closing with a discussion of future opportunities, the results from which we can anticipate finding in Asteroids V. Because this topic is of broad importance to asteroids, we also point to relevant in-depth discussions elsewhere in this volume.Comment: Chapter to appear in the (University of Arizona Press) Space Science Series Book: Asteroids I

    SWUIS-A: A Versatile, Low-Cost UV/VIS/IR Imaging System for Airborne Astronomy and Aeronomy Research

    Get PDF
    We have developed and successfully flight-tested on 14 different airborne missions the hardware and techniques for routinely conducting valuable astronomical and aeronomical observations from high-performance, two-seater military-type aircraft. The SWUIS-A (Southwest Universal Imaging System - Airborne) system consists of an image-intensified CCD camera with broad band response from the near-UV to the near IR, high-quality foreoptics, a miniaturized video recorder, an aircraft-to-camera power and telemetry interface with associated camera controls, and associated cables, filters, and other minor equipment. SWUIS-A's suite of high-quality foreoptics gives it selectable, variable focal length/variable field-of-view capabilities. The SWUIS-A camera frames at 60 Hz video rates, which is a key requirement for both jitter compensation and high time resolution (useful for occultation, lightning, and auroral studies). Broadband SWUIS-A image coadds can exceed a limiting magnitude of V = 10.5 in <1 sec with dark sky conditions. A valuable attribute of SWUIS-A airborne observations is the fact that the astronomer flies with the instrument, thereby providing Space Shuttle-like "payload specialist" capability to "close-the-loop" in real-time on the research done on each research mission. Key advantages of the small, high-performance aircraft on which we can fly SWUIS-A include significant cost savings over larger, more conventional airborne platforms, worldwide basing obviating the need for expensive, campaign-style movement of specialized large aircraft and their logistics support teams, and ultimately faster reaction times to transient events. Compared to ground-based instruments, airborne research platforms offer superior atmospheric transmission, the mobility to reach remote and often-times otherwise unreachable locations over the Earth, and virtually-guaranteed good weather for observing the sky. Compared to space-based instruments, airborne platforms typically offer substantial cost advantages and the freedom to fly along nearly any groundtrack route for transient event tracking such as occultations and eclipses

    Characterization of the Morphometry of Impact Craters Hosting Polar Deposits in Mercury's North Polar Region

    Get PDF
    Earth-based radar images dating back two decades show that the floors of some polar craters on Mercury host radar-bright deposits that have been proposed to consist of frozen volatiles. Several hypotheses have been put forth to explain their source, including volcanic outgassing, chemical sputtering, and deposition of exogenous water ice. Calculations show that volatiles are thermally stable in permanently shadowed areas. An earlier study of the depths of north polar craters determined with photoclinometric techniques applied to Mariner 10 images yielded the conclusion that the mean ratio of crater depth d to rim-crest diameter D for craters hosting polar deposits is two-thirds that of the mean ratio for a comparable population of neighboring craters lacking such deposits. This result could be explained by (though doesn't require) the presence of a thick layer of volatiles within the polar deposit-hosting craters. Here we use altimetric profiles and topographic maps obtained by the Mercury Laser Altimeter (MLA) to revisit this analysis. MLA is an instrument on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, which has been orbiting Mercury since March 2011. MLA transmits a 1064-nm laser pulse at 8 Hz during MESSENGER's trajectory over Mercury s surface. The MLA illuminates surface areas averaging between 15 m and 100 m in diameter, spaced approx 400 m apart along the spacecraft ground track. The radial precision of individual measurements is <1 m, and the current accuracy with respect to Mercury s center of mass is better than 20 m. As of mid-December 2011, MLA coverage had reached to 15 S and has yielded a comprehensive map of the topography of Mercury s northern hemisphere. The MLA data are used here to quantify the shapes of craters in the north polar region and to avoid the shadowing bias of photoclinometric techniques

    Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroid Space Weathering Studies

    Get PDF
    Understanding the composition of Mercury's crust is key to comprehending the formation of the planet. The regolith, derived from the crustal bedrock, has been altered via a set of space weathering processes. These processes are the same set of mechanisms that work to form Mercury's exosphere, and are moderated by the local space environment and the presence of an intrinsic planetary magnetic field. The alterations need to be understood in order to determine the initial crustal compositions. The complex interrelationships between Mercury's exospheric processes, the space environment, and surface composition are examined and reviewed. The processes are examined in the context of our understanding of these same processes on the lunar and asteroid regoliths. Keywords: Mercury (planet) Space weathering Surface processes Exosphere Surface composition Space environment
    corecore