7 research outputs found

    Mosaic dysfunction of mitophagy in mitochondrial muscle disease

    Get PDF
    Mitophagy is a quality control mechanism that eliminates damaged mitochondria, yet its significance in mammalian pathophysiology and aging has remained unclear. Here, we report that mitophagy contributes to mitochondrial dysfunction in skeletal muscle of aged mice and human patients. The early disease stage is characterized by muscle fibers with central nuclei, with enhanced mitophagy around these nuclei. However, progressive mitochondrial dysfunction halts mitophagy and disrupts lysosomal homeostasis. Interestingly, activated or halted mitophagy occur in a mosaic manner even in adjacent muscle fibers, indicating cell-autonomous regulation. Rapamycin restores mitochondrial turnover, indicating mTOR-dependence of mitochondrial recycling in advanced disease stage. Our evidence suggests that (1) mitophagy is a hallmark of age-related mitochondrial pathology in mammalian muscle, (2) mosaic halting of mitophagy is a mechanism explaining mosaic respiratory chain deficiency and accumulation of pathogenic mtDNA variants in adult-onset mitochondrial diseases and normal aging, and (3) augmenting mitophagy is a promising therapeutic approach for muscle mitochondrial dysfunction.Peer reviewe

    Effects of Aging and Caloric Restriction on Fiber Type Composition, Mitochondrial Morphology and Dynamics in Rat Oxidative and Glycolytic Muscles

    Get PDF
    Aging is associated with a progressive decline in muscle mass and strength, a process known as sarcopenia. Evidence indicates that mitochondrial dysfunction plays a causal role in sarcopenia and suggests that alterations in mitochondrial dynamics/morphology may represent an underlying mechanism. Caloric restriction (CR) is among the most efficient nonpharmacological interventions to attenuate sarcopenia in rodents and is thought to exert its beneficial effects by improving mitochondrial function. However, CR effects on mitochondrial morphology and dynamics, especially in aging muscle, remain unknown. To address this issue, we investigated mitochondrial morphology and dynamics in the oxidative soleus (SOL) and glycolytic white gastrocnemius (WG) muscles of adult (9-month-old) ad libitum-fed (AL; A-AL), old (22-month-old) AL-fed (O-AL), and old CR (O-CR) rats. We show that CR attenuates the aging-related decline in the muscle-to-body-weight ratio, a sarcopenic index. CR also prevented the effects of aging on muscle fiber type composition in both muscles. With aging, the SOL displayed fragmented SubSarcolemmal (SS) and InterMyoFibrillar (IMF) mitochondria, an effect attenuated by CR. Aged WG displayed enlarged SS and more complex/branched IMF mitochondria. CR had marginal anti-aging effects on WG mitochondrial morphology. In the SOL, DRP1 (pro-fission protein) content was higher in O-AL vs YA-AL, and Mfn2 (pro-fusion) content was higher in O-CR vs A-AL. In the gastrocnemius, Mfn2, Drp1, and Fis1 (pro-fission) contents were higher in O-AL vs A-AL. CR reduced this aging-related increase in Mfn2 and Fis1 content. Overall, these results reveal for the first time that aging differentially impacts mitochondrial morphology and dynamics in different muscle fiber types, by increasing fission/fragmentation in oxidative fibers while enhancing mitochondrial size and branching in glycolytic fibers. Our results also indicate that although CR partially attenuates aging-related changes in mitochondrial dynamics in glycolytic fibers, its anti-aging effect on mitochondrial morphology is restricted to oxidative fibers

    Dysfonctions mitochondriales et vieillissement musculaire

    No full text
    Le vieillissement musculaire s’accompagne de pertes progressives de masse et de force musculaires, un processus physiologique que l’on nomme sarcopénie. Les conséquences de la sarcopénie sont multiples et peuvent grandement altérer la qualité de vie des personnes affectées en augmentant le risque de chutes et en diminuant les capacités fonctionnelles, à l’origine d’une perte de mobilité et d’autonomie. Parmi les multiples théories qui ont été avancées pour expliquer le développement de la sarcopénie, la théorie mitochondriale du vieillissement a focalisé un effort de recherche très important au cours des deux dernières décennies. La vision généralement acceptée de cette théorie est que, du fait de la production de radicaux libres inhérente au fonctionnement de la chaîne respiratoire mitochondriale, les protéines, les lipides et l’ADN des mitochondries accumulent des dommages oxydatifs au cours du vieillissement. Ces dommages seraient, en retour, responsables (1) d’une exacerbation de la production de radicaux libres par les mitochondries, (2) d’une altération de l’énergétique mitochondriale, et (3) du déclenchement par les mitochondries, du processus d’apoptose des cellules. Bien qu’elle paraisse extrêmement séduisante, certains aspects de cette théorie restent à l’heure actuelle controversés. Les objectifs de cette revue sont de faire un état des connaissances sur le rôle joué par l’accumulation de dysfonctions mitochondriales dans le développement de la sarcopénie et de présenter les mécanismes potentiellement à l’origine de l’accumulation de ces dysfonctions au cours du vieillissement musculaire

    Autophagy ablation in skeletal muscles worsens sepsis-induced muscle wasting, impairs whole-body metabolism, and decreases survival

    No full text
    Summary: Septic patients frequently develop skeletal muscle wasting and weakness, resulting in severe clinical consequences and adverse outcomes. Sepsis triggers sustained induction of autophagy, a key cellular degradative pathway, in skeletal muscles. However, the impact of enhanced autophagy on sepsis-induced muscle dysfunction remains unclear. Using an inducible and muscle-specific Atg7 knockout mouse model (Atg7iSkM−KO), we investigated the functional importance of skeletal muscle autophagy in sepsis using the cecal ligation and puncture model. Atg7iSkM−KO mice exhibited a more severe phenotype in response to sepsis, marked by severe muscle wasting, hypoglycemia, higher ketone levels, and a decreased in survival as compared to mice with intact Atg7. Sepsis and Atg7 deletion resulted in the accumulation of mitochondrial dysfunction, although sepsis did not further worsen mitochondrial dysfunction in Atg7iSkM−KO mice. Overall, our study demonstrates that autophagy inactivation in skeletal muscles triggers significant worsening of sepsis-induced muscle and metabolic dysfunctions and negatively impacts survival
    corecore