80 research outputs found

    A New SteatoScore in the Evaluation of Non-Alcoholic Liver Disease in Oncologic Patients

    Get PDF
    PurposeThe aims of this study were to evaluate the reproducibility of a new multi-parametric steatoscore (new SteatoScore) in oncologic patients with non-alcoholic fatty liver disease (NAFLD) and to compare it with computed tomography (CT). Materials and MethodsFifty-one (31 men, 20 women) oncologic patients, with a mean age and weight of 63.9 years and 78.33 kg, respectively, were retrospectively enrolled in the study. Patients underwent ultrasound (US) and computed tomography (CT) examinations as part of their oncologic follow-up protocol. US examinations were performed by using a 3.5-MHz convex probe. During the US examination, three standardized clips were obtained in each patient. Two operators performed all measurements, one of whom repeated the processing twice in 1 year. Hepatic/renal ratio (HR), attenuation rate (AR), diaphragm visualization (DV), hepatic/portal vein ratio (HPV), and portal vein wall visualization (PVW) were acquired and calculated by using Matlab and inserted in a multi-parametric algorithm called new SteatoScore. On unenhanced CT scan, hepatic attenuation (HA), liver-spleen difference (L-S), and liver/spleen ratio (L/S) were measured by placement of a region of interest (ROI) within liver and spleen parenchyma, avoiding areas with vessels and biliary ducts. ResultsThe intra-observer variability was greater than the inter-observer one, with intraclass correlation coefficient (ICC) values of 0.94 and 0.97, respectively. Correlation between single US and CT parameters provided an agreement in no case exceeding 50%. New SteatoScore showed high reproducibility, and high coefficient of correlation with L-S (R = -0.64; p < 0.0001) and L/S (R = -0.62; p < 0.0001) at CT. ConclusionNew SteatoScore has a high reproducibility and shows a good correlation with unenhanced CT in evaluation of oncologic patients with NAFLD

    Antitumoral effects of attenuated Listeria monocytogenes in a genetically engineered mouse model of melanoma

    Get PDF
    Attenuated Listeria monocytogenes (Lmat-LLO) represents a valuable anticancer vaccine and drug delivery platform. Here we show that in vitro Lmat-LLO causes ROS production and, in turn, apoptotic killing of a wide variety of melanoma cells, irrespectively of their stage, mutational status, sensitivity to BRAF inhibitors or degree of stemness. We also show that, when administered in the therapeutic setting to Braf/Pten genetically engineered mice, Lmat-LLO causes a strong decrease in the size and volume of primary melanoma tumors, as well as a reduction of the metastatic burden. At the molecular level, we confirm that the anti-melanoma activity exerted in vivo by Lmat-LLO depends also on its ability to potentiate the immune response of the organism against the infected tumor. Our data pave the way to the preclinical testing of listeria-based immunotherapeutic strategies against metastatic melanoma, using a genetically engineered mouse rather than xenograft models

    Production and characterization of natural rubber-Ca/P blends for biomedical purposes

    Get PDF
    This study presents the development of natural rubber-Ca/P blends, as promising candidates for biomedical purposes. The specific objectivewas the incorporation of Ca/P into a natural rubber polymericmatrix. Ca/P crystalline phaseswere synthesized by the sol-gel method and the polymeric matrices were produced using natural rubber extracted from latex of the Hevea brasiliensis. The shape and size of natural rubber particles present in the NR membrane, as well as, the way the Ca/P powder grains aggregate in the polymeric matrix were investigated, giving information about the interactions between the Ca/P and the natural rubber particles. Confocal fluorescence scanning microscopy measurements allowed us to propose a structure where the Ca/P grains are surrounded by natural rubber particles. This structure may mediate Ca2+ release for tissue regeneration. The systeminvestigated may open new horizons for development of a bandage which provides the controlled-release of biomaterials.CNPq (555100/2010-3)CAPES (PNPD/2583/2011)INCT/INEONanoBiome

    Carotid Ultrasound Boundary Study (CUBS): An Open Multicenter Analysis of Computerized Intima–Media Thickness Measurement Systems and Their Clinical Impact

    Get PDF
    Common carotid intima–media thickness (CIMT) is a commonly used marker for atherosclerosis and is often computed in carotid ultrasound images. An analysis of different computerized techniques for CIMT measurement and their clinical impacts on the same patient data set is lacking. Here we compared and assessed five computerized CIMT algorithms against three expert analysts’ manual measurements on a data set of 1088 patients from two centers. Inter- and intra-observer variability was assessed, and the computerized CIMT values were compared with those manually obtained. The CIMT measurements were used to assess the correlation with clinical parameters, cardiovascular event prediction through a generalized linear model and the Kaplan–Meier hazard ratio. CIMT measurements obtained with a skilled analyst's segmentation and the computerized segmentation were comparable in statistical analyses, suggesting they can be used interchangeably for CIMT quantification and clinical outcome investigation. To facilitate future studies, the entire data set used is made publicly available for the community at http://dx.doi.org/10.17632/fpv535fss7.1

    Arterial pressure changes monitoring with a new precordial noninvasive sensor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, a cutaneous force-frequency relation recording system based on first heart sound amplitude vibrations has been validated. A further application is the assessment of Second Heart Sound (S2) amplitude variations at increasing heart rates. The aim of this study was to assess the relationship between second heart sound amplitude variations at increasing heart rates and hemodynamic changes.</p> <p>Methods</p> <p>The transcutaneous force sensor was positioned in the precordial region in 146 consecutive patients referred for exercise (n = 99), dipyridamole (n = 41), or pacing stress (n = 6). The curve of S2 peak amplitude variation as a function of heart rate was computed as the increment with respect to the resting value.</p> <p>Results</p> <p>A consistent S2 signal was obtained in all patients. Baseline S2 was 7.2 ± 3.3 m<it>g</it>, increasing to 12.7 ± 7.7 m<it>g </it>at peak stress. S2 percentage increase was + 133 ± 104% in the 99 exercise, + 2 ± 22% in the 41 dipyridamole, and + 31 ± 27% in the 6 pacing patients (p < 0.05). Significant determinants of S2 amplitude were blood pressure, heart rate, and cardiac index with best correlation (R = .57) for mean pressure.</p> <p>Conclusion</p> <p>S2 recording quantitatively documents systemic pressure changes.</p

    Post-exercise contractility, diastolic function, and pressure: Operator-independent sensor-based intelligent monitoring for heart failure telemedicine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>New sensors for intelligent remote monitoring of the heart should be developed. Recently, a cutaneous force-frequency relation recording system has been validated based on heart sound amplitude and timing variations at increasing heart rates.</p> <p>Aim</p> <p>To assess sensor-based post-exercise contractility, diastolic function and pressure in normal and diseased hearts as a model of a wireless telemedicine system.</p> <p>Methods</p> <p>We enrolled 150 patients and 22 controls referred for exercise-stress echocardiography, age 55 ± 18 years. The sensor was attached in the precordial region by an ECG electrode. Stress and recovery contractility were derived by first heart sound amplitude vibration changes; diastolic times were acquired continuously. Systemic pressure changes were quantitatively documented by second heart sound recording.</p> <p>Results</p> <p>Interpretable sensor recordings were obtained in all patients (feasibility = 100%). Post-exercise contractility overshoot (defined as increase > 10% of recovery contractility vs exercise value) was more frequent in patients than controls (27% vs 8%, p < 0.05). At 100 bpm stress heart rate, systolic/diastolic time ratio (normal, < 1) was > 1 in 20 patients and in none of the controls (p < 0.01); at recovery systolic/diastolic ratio was > 1 in only 3 patients (p < 0.01 vs stress). Post-exercise reduced arterial pressure was sensed.</p> <p>Conclusion</p> <p>Post-exercise contractility, diastolic time and pressure changes can be continuously measured by a cutaneous sensor. Heart disease affects not only exercise systolic performance, but also post-exercise recovery, diastolic time intervals and blood pressure changes – in our study, all of these were monitored by a non-invasive wearable sensor.</p
    • 

    corecore