190 research outputs found

    Nevada Gaming Statutes: Their Evolution and History

    Full text link
    Throughout the past eighty years, Nevada gaming has changed considerably. Nevada’s gaming laws have both reflected and influenced that change. At every step of the way, regulatory changes paved the way for the growth and evolution of Nevada’s gaming industry into one of the world’s largest and best regulated

    SAR processing on the MPP

    Get PDF
    The processing of synthetic aperture radar (SAR) signals using the massively parallel processor (MPP) is discussed. The fast Fourier transform convolution procedures employed in the algorithms are described. The MPP architecture comprises an array unit (ARU) which processes arrays of data; an array control unit which controls the operation of the ARU and performs scalar arithmetic; a program and data management unit which controls the flow of data; and a unique staging memory (SM) which buffers and permutes data. The ARU contains a 128 by 128 array of bit-serial processing elements (PE). Two-by-four surarrays of PE's are packaged in a custom VLSI HCMOS chip. The staging memory is a large multidimensional-access memory which buffers and permutes data flowing with the system. Efficient SAR processing is achieved via ARU communication paths and SM data manipulation. Real time processing capability can be realized via a multiple ARU, multiple SM configuration

    Nevada Gaming Licensing Qualifications, Standards, and Procedures

    Full text link
    The process of acquiring a Nevada gaming license is long and consists of several procedures. Although the process is time-consuming, it is far from Byzantine or obscure; each step, as defined by statute and precedent, flows logically from the one before. This paper provides an overview of licensing process in Nevada, with additional information on the reasoning behind several of the procedures involved

    Innovations in hypoxic training

    Get PDF
    Athletes seem compelled to include some forms of altitude training in their preparation expecting additional performance gains compared to equivalent training at sea-level. For the general population, altitude training often only consists in spending weeks at altitude to enhance red blood cell production, hemoglobin mass and thus oxygen delivery to the muscles. Over the past two decades, intermittent hypoxic training (IHT), that is, a method where athletes live at or near sea-level but train in hypobaric hypoxia (HH, real altitude) or normobaric hypoxia (NH, simulated altitude) was shown to induce exclusive adaptations directly at the muscular level that may support performance improvements. Our work first demonstrated significant differences between exposure and exercise in HH vs. NH that may help disentangling hypoxia and hypobaria for athletes or mountaineers who use NH to prepare for altitude competitions or expeditions. Second, we produced a comprehensive review of the strikingly poor and controversial benefits of IHT for performance enhancement in team or racket sports. Using evidence of peripheral muscular adaptations with the recruitment of fast-twitch fibers playing a major role, we then developed and assessed the potential of a new training method in hypoxia based on the repetitions of "all-out" sprints interspersed with incomplete recovery periods, the so called "repeated sprint training in hypoxia" (RSH). We have consequently shown RSH to delay fatigue when sprints with incomplete recoveries are repeated until exhaustion both in cycling and cross-country ski double poling. We definitely outlined RSH as a promising training strategy and proposed new studies to judge the efficacy of RSH in team sports and determine the specific mechanisms that may enhance team game results. In conclusion, our work allowed updating the panorama over the contemporary hypoxic training possibilities. It provides an overview of the current scientific knowledge about intermittent hypoxic training and repeated sprint training in hypoxia (RSH). This will benefit athletes and teams in intermittent sports looking to include a hypoxic stimulus to their training to gain a specific competitive edge

    Indirect biomarkers of blood doping: A systematic review.

    Get PDF
    The detection of blood doping represents a current major issue in sports and an ongoing challenge for antidoping research. Initially focusing on direct detection methods to identify a banned substance or its metabolites, the antidoping effort has been progressively complemented by indirect approaches. The longitudinal and individual monitoring of specific biomarkers aims to identify nonphysiological variations that may be related to doping practices. From this perspective, the identification of markers sensitive to erythropoiesis alteration is key in the screening of blood doping. The current Athlete Biological Passport implemented since 2009 is composed of 14 variables (including two primary markers, i.e., hemoglobin concentration and OFF score) for the hematological module to be used for indirect detection of blood doping. Nevertheless, research has continually proposed and investigated new markers sensitive to an alteration of the erythropoietic cascade and specific to blood doping. If multiple early markers have been identified (at the transcriptomic level) or developed directly in a diagnostics' kit (at a proteomic level), other target variables at the end of the erythropoietic process (linked with the red blood cell functions) may strengthen the hematological module in the future. Therefore, this review aims to provide a global systematic overview of the biomarkers considered to date in the indirect investigation of blood doping

    The Influence of Training Load on Hematological Athlete Biological Passport Variables in Elite Cyclists.

    Get PDF
    The hematological module of the Athlete Biological Passport (ABP) is used in elite sport for antidoping purposes. Its aim is to better target athletes for testing and to indirectly detect blood doping. The ABP allows to monitor hematological variations in athletes using selected primary blood biomarkers [hemoglobin concentration (Hb) and reticulocyte percentage (Ret%)] with an adaptive Bayesian model to set individual upper and lower limits. If values fall outside the individual limits, an athlete may be further targeted and ultimately sanctioned. Since (Hb) varies with plasma volume (PV) fluctuations, possibly caused by training load changes, we investigated the putative influence of acute and chronic training load changes on the ABP variables. Monthly blood samples were collected over one year in 10 male elite cyclists (25.6 ± 3.4 years, 181 ± 4 cm, 71.3 ± 4.9 kg, 6.7 ± 0.8 W <sup>.</sup> kg <sup>-1</sup> 5-min maximal power output) to calculate individual ABP profiles and monitor hematological variables. Total hemoglobin mass (Hbmass) and PV were additionally measured by carbon monoxide rebreathing. Acute and chronic training loads-respectively 5 and 42 days before sampling-were calculated considering duration and intensity (training stress score, TSS <sup>TM</sup> ). (Hb) averaged 14.2 ± 0.0 (mean ± SD) g <sup>.</sup> dL <sup>-1</sup> (range: 13.3-15.5 g·dl <sup>-1</sup> ) over the study with significant changes over time (P = 0.004). Hbmass was 1030 ± 87 g (range: 842-1116 g) with no significant variations over time (P = 0.118), whereas PV was 4309 ± 350 mL (range: 3,688-4,751 mL) with a time-effect observed over the study time (P = 0.014). Higher acute-but not chronic-training loads were associated with significantly decreased (Hb) (P <0.001). Although individual hematological variations were observed, all ABP variables remained within the individually calculated limits. Our results support that acute training load variations significantly affect (Hb), likely due to short-term PV fluctuations, underlining the importance of considering training load when interpreting individual ABP variations for anti-doping purposes

    Le dialogue nécessaire entre médecine et antidopage pour l’intégrité du sport et de l’athlète = The necessary dialogue between medicine and anti-doping for the integrity of sport and the athlete

    Get PDF
    En réponse aux actualités antidopage, cet article traite quelques cas particuliers et s’étend aux perspectives futures de développement de stratégies antidopage efficaces. Après avoir rappelé les principes actuels de la lutte antidopage, il aborde l’utilisation de substances tolérées à un certain seuil et évoque les autorisations à usage thérapeutique (AUT). Les substances autorisées mais pouvant présenter un risque sanitaire pour les athlètes sont discutées avant de conclure sur le développement du passeport biologique de l’athlète comme futur terrain commun pour la lutte antidopage et le suivi médical des sportifs. En conclusion, cette approche souligne le dialogue impératif entre organisations antidopage et médecine du sport afin de défendre de bonnes pratiques à même de préserver la valeur intrinsèque du sport. In the light of recurring anti-doping news, this article discusses some special cases and extends to the future prospects of developing effective anti-doping strategies. After recalling the current principles of the fight against doping, the use of substances tole-rated at a certain threshold, and the therapeutic use exemptions (TUE) are discussed. Authorized substances with a health risk for athletes are discussed before concluding on the development of the athlete's biological passport as a future common ground for anti-doping and medical follow-up of athletes. In conclusion, this approach emphasizes the imperative dialogue between anti-doping organizations and sports medicine in order to defend good practices preserving the intrinsic value of sport

    Comparison of "Live High-Train Low" in Normobaric versus Hypobaric Hypoxia.

    Get PDF
    We investigated the changes in both performance and selected physiological parameters following a Live High-Train Low (LHTL) altitude camp in either normobaric hypoxia (NH) or hypobaric hypoxia (HH) replicating current "real" practices of endurance athletes. Well-trained triathletes were split into two groups (NH, n = 14 and HH, n = 13) and completed an 18-d LHTL camp during which they trained at 1100-1200 m and resided at an altitude of 2250 m (PiO2  = 121.7±1.2 vs. 121.4±0.9 mmHg) under either NH (hypoxic chamber; FiO2 15.8±0.8%) or HH (real altitude; barometric pressure 580±23 mmHg) conditions. Oxygen saturations (SpO2) were recorded continuously daily overnight. PiO2 and training loads were matched daily. Before (Pre-) and 1 day after (Post-) LHTL, blood samples, VO2max, and total haemoglobin mass (Hbmass) were measured. A 3-km running test was performed near sea level twice before, and 1, 7, and 21 days following LHTL. During LHTL, hypoxic exposure was lower for the NH group than for the HH group (220 vs. 300 h; P<0.001). Night SpO2 was higher (92.1±0.3 vs. 90.9±0.3%, P<0.001), and breathing frequency was lower in the NH group compared with the HH group (13.9±2.1 vs. 15.5±1.5 breath.min-1, P<0.05). Immediately following LHTL, similar increases in VO2max (6.1±6.8 vs. 5.2±4.8%) and Hbmass (2.6±1.9 vs. 3.4±2.1%) were observed in NH and HH groups, respectively, while 3-km performance was not improved. However, 21 days following the LHTL intervention, 3-km run time was significantly faster in the HH (3.3±3.6%; P<0.05) versus the NH (1.2±2.9%; ns) group. In conclusion, the greater degree of race performance enhancement by day 21 after an 18-d LHTL camp in the HH group was likely induced by a larger hypoxic dose. However, one cannot rule out other factors including differences in sleeping desaturations and breathing patterns, thus suggesting higher hypoxic stimuli in the HH group

    A new multimodal paradigm for biomarkers longitudinal monitoring: a clinical application to women steroid profiles in urine and blood.

    Get PDF
    Most current state-of-the-art strategies to generate individual adaptive reference ranges are designed to monitor one clinical parameter at a time. An innovative methodology is proposed for the simultaneous longitudinal monitoring of multiple biomarkers. The estimation of individual thresholds is performed by applying a Bayesian modeling strategy to a multivariate score integrating several biomarkers (compound concentration and/or ratio). This multimodal monitoring was applied to data from a clinical study involving 14 female volunteers with normal menstrual cycles receiving testosterone via transdermal route, as to test its ability to detect testosterone administration. The study samples consisted of urine and blood collected during 4 weeks of a control phase and 4 weeks with a daily testosterone gel application. Integrating multiple biomarkers improved the detection of testosterone gel administration with substantially higher sensitivity compared with the distinct follow-up of each biomarker, when applied to selected urine and serum steroid biomarkers, as well as the combination of both. Among the 175 known positive samples, 38% were identified by the multimodal approach using urine biomarkers, 79% using serum biomarkers and 83% by combining biomarkers from both biological matrices, whereas 10%, 67% and 64% were respectively detected using standard unimodal monitoring. The detection of abnormal patterns can be improved using multimodal approaches. The combination of urine and serum biomarkers reduced the overall number of false-negatives, thus evidencing promising complementarity between urine and blood sampling for doping control, as highlighted in the case of the use of transdermal testosterone preparations. The generation in a multimodal setting of adaptive and personalized reference ranges opens up new opportunities in clinical and anti-doping profiling. The integration of multiple parameters in a longitudinal monitoring is expected to provide a more complete evaluation of individual profiles generating actionable intelligence to further guide sample collection, analysis protocols and decision-making in clinics and anti-doping

    7T MRI in natalizumab-associated PML and ongoing MS disease activity: a case study

    Get PDF
    OBJECTIVE: To assess the ability of ultra-high-field MRI to distinguish early progressive multifocal leukoencephalopathy (PML) from multiple sclerosis (MS) lesions in a rare case of simultaneous presentation of natalizumab-associated PML and ongoing MS activity. METHODS: Advanced neuroimaging including 1.5T, 3T, and 7T MRI with a spatial resolution of up to 0.08 mm(3) was performed. RESULTS: 7T MRI differentiated between PML-related and MS-related brain damage in vivo. Ring-enhancing MS plaques displayed a central vein, whereas confluent PML lesions were preceded by punctate or milky way-like T2 lesions. CONCLUSIONS: Given the importance of early diagnosis of treatment-associated PML, future systematic studies are warranted to assess the value of highly resolving MRI in differentiating between early PML- and MS-induced brain parenchymal lesions
    corecore