1,307 research outputs found
Discovery of a very X-ray luminous galaxy cluster at z=0.89 in the WARPS survey
We report the discovery of the galaxy cluster ClJ1226.9+3332 in the Wide
Angle ROSAT Pointed Survey (WARPS). At z=0.888 and L_X=1.1e45 erg/s (0.5-2.0
keV, h_0=0.5) ClJ1226.9+3332 is the most distant X-ray luminous cluster
currently known. The mere existence of this system represents a huge problem
for Omega_0=1 world models.
At the modest (off-axis) resolution of the ROSAT PSPC observation in which
the system was detected, ClJ1226.9+3332 appears relaxed; an off-axis HRI
observation confirms this impression and rules out significant contamination
from point sources. However, in moderately deep optical images (R and I band)
the cluster exhibits signs of substructure in its apparent galaxy distribution.
A first crude estimate of the velocity dispersion of the cluster galaxies based
on six redshifts yields a high value of 1650 km/s, indicative of a very massive
cluster and/or the presence of substructure along the line of sight. While a
more accurate assessment of the dynamical state of this system requires much
better data at both optical and X-ray wavelengths, the high mass of the cluster
has already been unambiguously confirmed by a very strong detection of the
Sunyaev-Zel'dovich effect in its direction (Joy et al. 2001).
Using ClJ1226.9+3332 and ClJ0152.7-1357 (z=0.835), the second-most distant
X-ray luminous cluster currently known and also a WARPS discovery, we obtain a
first estimate of the cluster X-ray luminosity function at 0.8<z<1.4 and
L_X>5e44 erg/s. Using the best currently available data, we find the comoving
space density of very distant, massive clusters to be in excellent agreement
with the value measured locally (z<0.3), and conclude that negative evolution
is not required at these luminosities out to z~1. (truncated)Comment: accepted for publication in ApJ Letters, 6 pages, 2 figures, uses
emulateapj.st
The sources, impact and management of car park runoff pollution: a review
Traffic emissions contribute significantly to the build-up of diffuse pollution loads on urban surfaces with their subsequent mobilisation and direct discharge posing problems for receiving water quality. This review focuses on the impact and mitigation of solids, metals, nutrients and organic pollutants in the runoff deriving from car parks. Variabilities in the discharged pollutant levels and in the potentials for pollutant mitigation complicate an impact assessment of car park runoff. The different available stormwater best management practices and proprietary devices are reported to be capable of reductions of between 20% and almost 100% for both suspended solids and a range of metals. This review contributes to prioritising the treatment options which can achieve the appropriate pollutant reductions whilst conforming to the site requirements of a typical car park. By applying different treatment scenarios to the runoff from a hypothetical car park, it is shown that optimal performance, in terms of ecological benefits for the receiving water, can be achieved using a treatment train incorporating permeable paving and bioretention systems. The review identifies existing research gaps and emphasises the pertinent management practices as well as design issues which are relevant to the mitigation of car park pollution
An assay for argininosuccinate synthetase in Neurospora
An assay for argininosuccinate synthetase in Neurospor
The WARPS survey - IV: The X-ray luminosity-temperature relation of high redshift galaxy clusters
We present a measurement of the cluster X-ray luminosity-temperature relation
out to high redshift (z~0.8). Combined ROSAT PSPC spectra of 91 galaxy clusters
detected in the Wide Angle ROSAT Pointed Survey (WARPS) are simultaneously fit
in redshift and luminosity bins. The resulting temperature and luminosity
measurements of these bins, which occupy a region of the high redshift L-T
relation not previously sampled, are compared to existing measurements at low
redshift in order to constrain the evolution of the L-T relation. We find a
best fit to low redshift (z1 keV, to be L proportional
to T^(3.15\pm0.06). Our data are consistent with no evolution in the
normalisation of the L-T relation up to z~0.8. Combining our results with ASCA
measurements taken from the literature, we find eta=0.19\pm0.38 (for Omega_0=1,
with 1 sigma errors) where L_Bol is proportional to (1 + z)^eta T^3.15, or
eta=0.60\pm0.38 for Omega_0=0.3. This lack of evolution is considered in terms
of the entropy-driven evolution of clusters. Further implications for
cosmological constraints are also discussed.Comment: 11 pages, 7 figures, accepted for publication in MNRA
- …