57 research outputs found

    Chemostratigraphy of Neoproterozoic carbonates: implications for 'blind dating'

    Get PDF
    The delta C-13(carb) and Sr-87/Sr-86 secular variations in Neoproteozoic seawater have been used for the purpose of 'isotope stratigraphy' but there are a number of problems that can preclude its routine use. In particular, it cannot be used with confidence for 'blind dating'. The compilation of isotopic data on carbonate rocks reveals a high level of inconsistency between various carbon isotope age curves constructed for Neoproteozoic seawater, caused by a relatively high frequency of both global and local delta C-13(carb) fluctuations combined with few reliable age determinations. Further complication is caused by the unresolved problem as to whether two or four glaciations, and associated negative delta C-13(carb) excursions, can be reliably documented. Carbon isotope stratigraphy cannot be used alone for geological correlation and 'blind dating'. Strontium isotope stratigraphy is a more reliable and precise tool for stratigraphic correlations and indirect age determinations. Combining strontium and carbon isotope stratigraphy, several discrete ages within the 590-544 Myr interval, and two age-groups at 660-610 and 740-690 Myr can be resolved

    Transcription factor induction of vascular blood stem cell niches in vivo

    Get PDF
    The hematopoietic niche is a supportive microenvironment composed of distinct cell types, including specialized vascular endothelial cells that directly interact with hematopoietic stem and progenitor cells (HSPCs). The molecular factors that specify niche endothelial cells and orchestrate HSPC homeostasis remain largely unknown. Using multi-dimensional gene expression and chromatin accessibility analyses in zebrafish, we define a conserved gene expression signature and cis-regulatory landscape that are unique to sinusoidal endothelial cells in the HSPC niche. Using enhancer mutagenesis and transcription factor overexpression, we elucidate a transcriptional code that involves members of the Ets, Sox, and nuclear hormone receptor families and is sufficient to induce ectopic niche endothelial cells that associate with mesenchymal stromal cells and support the recruitment, maintenance, and division of HSPCs in vivo. These studies set forth an approach for generating synthetic HSPC niches, in vitro or in vivo, and for effective therapies to modulate the endogenous niche

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Hydrochemistry of carbonate terrains in alpine glacial settings

    No full text
    Nearly 200 analyses of meltwaters, ice and snow from three alpine glacial sites in carbonate terrain are summarized and discussed in terms of sources of solutes and kinetic controls on the progress of weathering reactions. Most data derive from the Swiss Glacier de Tsanfleuron which is based on Cretaceous and Tertiary pure and impure limestones. Two other sites (Marmolada, Italian Dolomites and the Saskatchewan Glacier, Alberta) are based on a mixed calcitic‐dolomitic substrate. Most solutes originate from carbonate dissolution; moreover, where pyrite is present its oxidation supplies significant sulphate and forces more dissolution of carbonate. The ratios Sr2+/Ca2+ and Mg2+/Ca2+ are much higher in Tsanfleuron melt‐waters than local bedrock, a phenomenon that can be reproduced in the laboratory at small percentages of dissolution. These anomalous ratios are attributed to incongruent dissolution of traces of the metastable carbonates Mg‐calcite and aragonite. These phases also provide Na+ to solution. K+ is argued to originate mainly by ion‐exchange on clays with solute Ca2+. Quartz and very minor feldspar dissolution are also inferred. Locally enhanced input from atmospheric sources is recognized by high Cl− and associated Na+. The progress of weathering reactions has been evaluated by the trends in the data, computer modelling and some simple laboratory experiments. The most dilute samples show a trend towards removal of CO2 to low partial pressures (c. 10−5.5 atmospheres), reflecting initially rapid carbonate dissolution and relatively slow dissolution of gaseous CO2. Later addition of atmospheric CO2 or acid from pyrite oxidation allows further carbonate dissolution, but solutions show a wide range of saturations, and CO2 pressures as high as 10−2.2 where pyrite oxidation is important. In a carbonate terrain, measurement of electroconductivity (corrected to 25°C) and alkalinity in the field allows the following preliminary deductions (where meq stands for milliequivalents): (Formula Presented.) where S is the minimum meq(Ca2+ + Mg2+) produced by simple dissolution of carbonate unconnected with pyrite oxidation. As with any proxy method, these deductions do not remove the need for chemical analysis of waters in a given study area. Copyright © 1994 John Wiley & Sons, LtdSCOPUS: ar.jFLWNAinfo:eu-repo/semantics/publishe

    Oral Rote Sequencing Abilities of Kindergarten and Fourth-Grade Students

    Full text link
    A population of 300 Kindergarteners and fourth graders were asked to perform a series of rote sequencing language tasks which included naming the days of the week, the months of the year, saying the alphabet and counting. The subjects were also asked to name as many colors as they could. Provisional norms for the performance on these tasks were proposed from the data. The data suggest no difference in performance between the sexes in either grade population. Marked improvement in rote sequencing abilities appeared for all tasks between the two grade levels except for naming colors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67822/2/10.1177_152574017900300103.pd
    corecore