11 research outputs found

    Harnessing behavioral psychology to encourage individuals' adoption of pollinator conservation behaviors

    Get PDF
    The economic and ecological importance of pollinators and the increasingly evident decline of their populations have drawn concern from scientists, governments, and individuals alike. While research has focused on the ecological causes and solutions to pollinator declines, it is less understood how to motivate actual behavior changes to help conserve pollinators. Behavioral psychologists have developed many theories to explain how human behavioral drivers affect the adoption of pro-environmental behaviors such as recycling and other sustainability actions. A comprehensive model incorporating norm activation theory, the new ecological paradigm, values-belief-norm theory, and the theory of planned behavior suggests various psychological determinants that drive changes in pro-environmental behaviors. A survey was constructed using Qualtrics software to measure and analyze >1,500 individuals' responses to questions designed to test the relationships between different types of pollinator conservation behaviors and the sociopsychological determinants of an individual's intention to perform said behaviors. Previous behaviors, issue awareness, and positive attitudes toward pollinators consistently predict increased intention to perform pollinator conservation behaviors, which supports related research on pro-environmental behaviors. Other determinants, such as ascription of responsibility and perceived behavioral control, had positive effects on the intention to perform some of the tested pollinator conservation behaviors. Understanding these relationships could help improve efforts to educate and increase the adoption of these pollinator conservation behaviors. Finally, many determinants had mixed and fewer significant relationships with the intention to perform conservation behaviors, which suggests the need for revisions to the specific wording of the survey tools and additional testing of these psychological determinants

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Comparison of multimodal attract-and-kill formulations for managing Drosophila suzukii: Behavioral and lethal effects.

    No full text
    Attract-and-kill (A&K) is a potential alternative control tactic for managing the invasive spotted-wing drosophila, Drosophila suzukii Matsumura. Here, we compared the efficacy of two novel A&K formulations based on proprietary blends-ACTTRA SWD OR1 (henceforth OR1) and ACTTRA SWD TD (henceforth TD)-in managing D. suzukii. Using two-choice bioassays, we compared OR1 and TD for their relative attractiveness to adult D. suzukii. Additionally, we tested how the addition of (1) a red dye (visual cue) and (2) the insecticide spinosad (Entrust™) to the OR1 and TD formulations influenced the attraction of adult D. suzukii in the presence of blueberry fruits. Finally, complementary laboratory efficacy (no-choice) bioassays were conducted to assess the mortality of adult D. suzukii exposed to OR1 and TD. A direct comparison between TD and OR1 formulations indicated the TD formulation was ~8 times more attractive than OR1. Adding a red dye to the TD or OR1 formulation did not significantly alter the attraction or mortality of adult D. suzukii compared to the formulation without a dye. Similarly, irrespective of dye status, adding spinosad to either the TD or OR1 formulation did not alter the adult D. suzukii behavioral response to these formulations but resulted in significantly higher D. suzukii mortality. Overall, the TD formulations resulted in significantly higher, or at least comparable, mortality to the OR1 formulations. In summary, our laboratory results demonstrated the higher efficacy of a TD-based A&K product in managing D. suzukii over its well-tested predecessor, the OR1 formulation, confirming its potential as a new behavioral tactic against this pest

    A global assessment of environmental and climate influences on wetland macroinvertebrate community structure and function

    No full text
    Estimating organisms' responses to environmental variables and taxon associations across broad spatial scales is vital for predicting their responses to climate change. Macroinvertebrates play a major role in wetland processes, but studies simultaneously exploring both community structure and community trait responses to environmental gradients are still lacking. We compiled a global dataset (six continents) from 756 depressional wetlands, including the occurrence of 96 macroinvertebrate families, their phylogenetic tree, and 19 biological traits. Using Bayesian hierarchical joint species distribution models (JSDMs), we estimated macroinvertebrate associations and compared the influences of local and climatic predictors on both individual macroinvertebrate families and their traits. While macroinvertebrate families were mainly related to broad-scale factors (maximum temperature and precipitation seasonality), macroinvertebrate traits were strongly related to local wetland hydroperiod. Interestingly, macroinvertebrate families and traits both showed positive and negative associations to the same environmental variables. As expected, many macroinvertebrate family occurrences were positively associated with temperature, but a few showed the opposite pattern and were found in cooler or montane regions. We also found that wetland macroinvertebrate communities would likely be affected by changing climates through alterations in traits related to precipitation seasonality, temperature seasonality, and wetland area. Temperature increases may negatively affect collector and shredder functional groups. A decrease in precipitation could lead to reductions in wetland area benefiting drought-tolerant macroinvertebrates, but it may negatively affect macroinvertebrates lacking those adaptations. Wetland processes may be compromised through broad-scale environmental changes altering macroinvertebrate family distributions and local hydroperiod shifts altering organism traits. Our complementary family-based and trait-based approaches elucidate the complex effects that climate change may produce on wetland ecosystems

    Braincharts for the human lifespan

    No full text
    Over the past 25 years, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, there are no reference standards against which to anchor measures of individual differences in brain morphology, in contrast to growth charts for traits such as height and weight. Here, we built an interactive online resource (www.brainchart.io) to quantify individual differences in brain structure from any current or future magnetic resonance imaging (MRI) study, against models of expected age-related trends. With the goal of basing these on the largest and most inclusive dataset, we aggregated MRI data spanning 115 days post-conception through 100 postnatal years, totaling 122,123 scans from 100,071 individuals in over 100 studies across 6 continents. When quantified as centile scores relative to the reference models, individual differences show high validity with non-MRI brain growth estimates and high stability across longitudinal assessment. Centile scores helped identify previously unreported brain developmental milestones and demonstrated increased genetic heritability compared to non-centiled MRI phenotypes. Crucially for the study of brain disorders, centile scores provide a standardised and interpretable measure of deviation that reveals new patterns of neuroanatomical differences across neurological and psychiatric disorders emerging during development and ageing. In sum, brain charts for the human lifespan are an essential first step towards robust, standardised quantification of individual variation and for characterizing deviation from age-related trends. Our global collaborative study
    corecore