1,137 research outputs found
Polariton-mediated Raman scattering in microcavities: A Green's function approach
We present calculations of the intensity of polariton-mediated inelastic
light scattering in semiconductor microcavities within a Green's function
framework. In addition to reproducing the strong coupling of light and matter,
this method also enables the inclusion of damping mechanisms in a consistent
way. Our results show excellent agreement with recent Raman scattering
experiments.Comment: 6 pages, 1 figur
Cavity polariton optomechanics: Polariton path to fully resonant dispersive coupling in optomechanical resonators
Resonant photoelastic coupling in semiconductor nanostructures opens new
perspectives for strongly enhanced light-sound interaction in optomechanical
resonators. One potential problem, however, is the reduction of the cavity
Q-factor induced by dissipation when the resonance is approached. We show in
this letter that cavity-polariton mediation in the light-matter process
overcomes this limitation allowing for a strongly enhanced photon-phonon
coupling without significant lifetime reduction in the strongly-coupled regime.
Huge optomechanical coupling factors in the PetaHz/nm range are envisaged,
three orders of magnitude larger than the backaction produced by the mechanical
displacement of the cavity mirrors.Comment: 6 pages, 4 figure
Resonance effects in the Raman scattering of mono- and few layers MoSe
Using resonant Raman scattering spectroscopy with 25 different laser lines,
we describe the Raman scattering spectra of mono- and multi-layers
2H-molybdenum diselenide (MoSe) as well as the different resonances
affecting the most pronounced features. For high-energy phonons, both A- and E-
symmetry type phonons present resonances with A and B excitons of MoSe
together with a marked increase of intensity when exciting at higher energy,
close to the C exciton energy. We observe symmetry dependent exciton-phonon
coupling affecting mainly the low-energy rigid layer phonon modes. The shear
mode for multilayer displays a pronounced resonance with the C exciton while
the breathing mode has an intensity that grows with the excitation laser
energy, indicating a resonance with electronic excitations at energies higher
than that of the C exciton.Comment: 9 Figures, 9 page
Dispersion and damping of multi-quantum well polaritons from resonant Brillouin scattering by folded acoustic modes
We report on confined exciton resonances of acoustic and folded acoustic
phonon light scattering in a GaAs/AlAs multi-quantum-well. Significant
variations of the line shifts and widths are observed across the resonance and
quantitatively reproduced in terms of the polariton dispersion. This high
resolution Brillouin study brings new unexpectedly detailed informations on the
polariton dynamics in confined systems
Uncoupled excitons in semiconductor microcavities detected in resonant Raman scattering
We present an outgoing resonant Raman-scattering study of a GaAs/AlGaAs based microcavity embedded in a p-i-n junction. The p-i-n junction allows the vertical electric field to be varied, permitting control of exciton-photon detuning and quenching of photoluminescence which otherwise obscures the inelastic light scattering signals. Peaks corresponding to the upper and lower polariton branches are observed in the resonant Raman cross sections, along with a third peak at the energy of uncoupled excitons. This third peak, attributed to disorder activated Raman scattering, provides clear evidence for the existence of uncoupled exciton reservoir states in microcavities in the strong-coupling regime
Extension of charge-state-distribution calculations for ion-solid collisions towards low velocities and many-electron ions
Knowledge of the detailed evolution of the whole charge-state distribution of projectile ions colliding with targets is required in several fields of research such as material science and atomic and nuclear physics but also in accelerator physics, and in particular in regard to the several foreseen large-scale facilities. However, there is a lack of data for collisions in the nonperturbative energy domain and that involve many-electron projectiles. Starting from the etacha model we developed [Rozet, Nucl. Instrum. Methods Phys. Res., Sect. B 107, 67 (1996)10.1016/0168-583X(95)00800-4], we present an extension of its validity domain towards lower velocities and larger distortions. Moreover, the system of rate equations is able to take into account ions with up to 60 orbital states of electrons. The computed data from the different new versions of the etacha code are compared to some test collision systems. The improvements made are clearly illustrated by 28.9MeVu-1Pb56+ ions, and laser-generated carbon ion beams of 0.045 to 0.5MeVu-1, passing through carbon or aluminum targets, respectively. Hence, those new developments can efficiently sustain the experimental programs that are currently in progress on the "next-generation" accelerators or laser facilities.Fil: Lamour, E.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Fainstein, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Galassi, Mariel Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Prigent, C.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Ramirez, C. A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Rivarola, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Rozet, J. P.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Trassinelli, M.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Vernhet, D.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; Franci
Theory of high-order harmonic generation from molecules by intense laser pulses
We show that high-order harmonics generated from molecules by intense laser
pulses can be expressed as the product of a returning electron wave packet and
the photo-recombination cross section (PRCS) where the electron wave packet can
be obtained from simple strong-field approximation (SFA) or from a companion
atomic target. Using these wave packets but replacing the PRCS obtained from
SFA or from the atomic target by the accurate PRCS from molecules, the
resulting HHG spectra are shown to agree well with the benchmark results from
direct numerical solution of the time-dependent Schr\"odinger equation, for the
case of H in laser fields. The result illustrates that these powerful
theoretical tools can be used for obtaining high-order harmonic spectra from
molecules. More importantly, the results imply that the PRCS extracted from
laser-induced HHG spectra can be used for time-resolved dynamic chemical
imaging of transient molecules with temporal resolutions down to a few
femtoseconds.Comment: 10 pages, 5 figure
Phonon Bloch oscillations in acoustic-cavity structures
We describe a semiconductor multilayer structure based in acoustic phonon
cavities and achievable with MBE technology, designed to display acoustic
phonon Bloch oscillations. We show that forward and backscattering Raman
spectra give a direct measure of the created phononic Wannier-Stark ladder. We
also discuss the use of femtosecond laser impulsions for the generation and
direct probe of the induced phonon Bloch oscillations. We propose a gedanken
experiment based in an integrated phonon source-structure-detector device, and
we present calculations of pump and probe time dependent optical reflectivity
that evidence temporal beatings in agreement with the Wannier-Stark ladder
energy splitting.Comment: PDF file including 4 figure
- …
