51 research outputs found

    Luminescent hyperbolic metasurfaces.

    Get PDF
    When engineered on scales much smaller than the operating wavelength, metal-semiconductor nanostructures exhibit properties unobtainable in nature. Namely, a uniaxial optical metamaterial described by a hyperbolic dispersion relation can simultaneously behave as a reflective metal and an absorptive or emissive semiconductor for electromagnetic waves with orthogonal linear polarization states. Using an unconventional multilayer architecture, we demonstrate luminescent hyperbolic metasurfaces, wherein distributed semiconducting quantum wells display extreme absorption and emission polarization anisotropy. Through normally incident micro-photoluminescence measurements, we observe absorption anisotropies greater than a factor of 10 and degree-of-linear polarization of emission >0.9. We observe the modification of emission spectra and, by incorporating wavelength-scale gratings, show a controlled reduction of polarization anisotropy. We verify hyperbolic dispersion with numerical simulations that model the metasurface as a composite nanoscale structure and according to the effective medium approximation. Finally, we experimentally demonstrate >350% emission intensity enhancement relative to the bare semiconducting quantum wells

    All-optical control of ferromagnetic thin films and nanostructures

    Full text link
    The interplay of light and magnetism has been a topic of interest since the original observations of Faraday and Kerr where magnetic materials affect the light polarization. While these effects have historically been exploited to use light as a probe of magnetic materials there is increasing research on using polarized light to alter or manipulate magnetism. For instance deterministic magnetic switching without any applied magnetic fields using laser pulses of the circular polarized light has been observed for specific ferrimagnetic materials. Here we demonstrate, for the first time, optical control of ferromagnetic materials ranging from magnetic thin films to multilayers and even granular films being explored for ultra-high-density magnetic recording. Our finding shows that optical control of magnetic materials is a much more general phenomenon than previously assumed. These results challenge the current theoretical understanding and will have a major impact on data memory and storage industries via the integration of optical control of ferromagnetic bits.Comment: 21 pages, 11 figure

    Intrinsic Entanglement Degradation by Multi-Mode Detection

    Full text link
    Relations between photon scattering, entanglement and multi-mode detection are investigated. We first establish a general framework in which one- and two-photon elastic scattering processes can be discussed, then we focus on the study of the intrinsic entanglement degradation caused by a multi-mode detection. We show that any multi-mode scattered state cannot maximally violate the Bell-CHSH inequality because of the momentum spread. The results presented here have general validity and can be applied to both deterministic and random scattering processes.Comment: 12 pages, 4 figures, v3: minor changes. Phys. Rev. A (2004), to be publishe

    Observation of amplitude and phase in ridge and photonic crystal waveguides operating at 1.55 μm by use of heterodyne scanning near-field optical microscopy

    Get PDF
    We apply heterodyne scanning near-field optical microscopy (SNOM) to observe with subwavelength resolution the amplitude and phase of optical fields propagating in several microfabricated waveguide devices operating around the 1.55 mu m wavelength. Good agreement between the SNOM measurements and predicted optical mode propagation characteristics in standard ridge waveguides demonstrates the validity of the method. In situ observation of the subwavelength-scale distribution and propagation of optical fields in straight and 90 degrees bend photonic crystal waveguides facilitates a more detailed understanding of the optical performance characteristics of these devices and illustrates the usefulness of the technique for investigating nanostructured photonic devices

    Cascaded logic gates in nanophotonic plasmon networks

    Get PDF
    Optical computing has been pursued for decades as a potential strategy for advancing beyond the fundamental performance limitations of semiconductor-based electronic devices, but feasible on-chip integrated logic units and cascade devices have not been reported. Here we demonstrate that a plasmonic binary NOR gate, a 'universal logic gate', can be realized through cascaded OR and NOT gates in four-terminal plasmonic nanowire networks. This finding provides a path for the development of novel nanophotonic on-chip processor architectures for future optical computing technologies

    Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109627/1/pssr201409359.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/109627/2/pssr201409359-sup-0001-figuresS1-S10_tableS1.pd

    Compartmentalized Culture of Perivascular Stroma and Endothelial Cells in a Microfluidic Model of the Human Endometrium

    Get PDF
    The endometrium is the inner lining of the uterus. Following specific cyclic hormonal stimulation, endometrial stromal fibroblasts (stroma) and vascular endothelial cells exhibit morphological and biochemical changes to support embryo implantation and regulate vascular function, respectively. Herein, we integrated a resin-based porous membrane in a dual chamber microfluidic device in polydimethylsiloxane that allows long term in vitro co-culture of human endometrial stromal and endothelial cells. This transparent, 2-m porous membrane separates the two chambers, allows for the diffusion of small molecules and enables high resolution bright field and fluorescent imaging. Within our primary human co-culture model of stromal and endothelial cells, we simulated the temporal hormone changes occurring during an idealized 28-day menstrual cycle. We observed the successful differentiation of stroma into functional decidual cells, determined by morphology as well as biochemically as measured by increased production of prolactin. By controlling the microfluidic properties of the device, we additionally found that shear stress forces promoted cytoskeleton alignment and tight junction formation in the endothelial layer. Finally, we demonstrated that the endometrial perivascular stroma model was sustainable for up to 4 weeks, remained sensitive to steroids and is suitable for quantitative biochemical analysis. Future utilization of this device will allow the direct evaluation of paracrine and endocrine crosstalk between these two cell types as well as studies of immunological events associated with normal versus disease-related endometrial microenvironments
    • …
    corecore