19 research outputs found

    β-Lactoglobulin Adsorption Layers at the Water/Air Surface: 5. Adsorption Isotherm and Equation of State Revisited, Impact of pH

    Get PDF
    The theoretical description of the adsorption of proteins at liquid/fluid interfaces suffers from the inapplicability of classical formalisms, which soundly calls for the development of more complicated adsorption models. A Frumkin-type thermodynamic 2-D solution model that accounts for nonidealities of interface enthalpy and entropy was proposed about two decades ago and has been continuously developed in the course of comparisons with experimental data. In a previous paper we investigated the adsorption of the globular protein β-lactoglobulin at the water/air interface and used such a model to analyze the experimental isotherms of the surface pressure, Π(c), and the frequency-, f-, dependent surface dilational viscoelasticity modulus, E(c)f , in a wide range of protein concentrations, c, and at pH 7. However, the best fit between theory and experiment proposed in that paper appeared incompatible with new data on the surface excess, Γ, obtained from direct measurements with neutron reflectometry. Therefore, in this work, the same model is simultaneously applied to a larger set of experimental dependences, e.g., Π(c), Γ(c), E(Π)f , etc., with E-values measured strictly in the linear viscoelasticity regime. Despite this ambitious complication, a best global fit was elaborated using a single set of parameter values, which well describes all experimental dependencies, thus corroborating the validity of the chosen thermodynamic model. Furthermore, we applied the model in the same manner to experimental results obtained at pH 3 and pH 5 in order to explain the well-pronounced effect of pH on the interfacial behavior of β-lactoglobulin. The results revealed that the propensity of β-lactoglobulin globules to unfold upon adsorption and stretch at the interface decreases in the order pH 3 > pH 7 > pH 5, i.e., with decreasing protein net charge. Finally, we discuss advantages and limitations in the current state of the mode

    Interfacial Properties of Tridecyl Dimethyl Phosphine Oxide Adsorbed at the Surface of a Solution Drop in Hexane Saturated Air

    Get PDF
    The surface tension of C₁₃DMPO aqueous solution drops in hexane vapor is studied using the drop profile method. The hexane was injected into the measuring cell at three different conditions: before the formation of the solution drop, at a certain moment during the adsorption process, and after reaching the equilibrium of surfactant adsorption. The surface tension values for all experiments at the same concentration and different injection situations ultimately coincide with each other after attaining the final equilibration stage. The equilibrium surface tension isotherms of C₁₃DMPO solutions, and the adsorption of both components—surfactant and hexane—were calculated. It was shown that the presence of surfactant leads to an increased hexane adsorption

    Adsorption of Equimolar Mixtures of Cationic and Anionic Surfactants at the Water/Hexane Interface

    Get PDF
    In mixed solutions of anionic and cationic surfactants, called catanionics, ion pairs are formed which behave like non-ionic surfactants with a much higher surface activity than the single components. In equimolar mixtures of NaCnSO4 and CmTAB, all surface-active ions are paired. For mixtures with n + m = const, the interfacial properties are rather similar. Catanionics containing one long-chain surfactant and one surfactant with medium chain length exhibit a strong increase in surface activity as compared with the single compounds. In contrast, catanionics of one mediumand one short chain surfactant have a surface activity similar to that of the medium-chain surfactant alone. Both the Frumkin model and the reorientation model describe the experimental equilibrium data equally well, while the adsorption kinetics of the mixed medium- and short-chain surfactants can be well described only with the reorientation model

    Thermodynamics, Kinetics and Dilational Visco-Elasticity of Adsorbed CnEOm Layers at the Aqueous Solution/Air Interface

    Get PDF
    The adsorption behaviour of linear poly(oxyethylene) alkyl ether (CnEOm) is best described by a reorientation model. Based on a complete set of experimental data, including the adsorption kinetics, the equilibrium surface tension isotherm and the surface dilational visco-elasticity, the thermodynamic and kinetic adsorption parameters for some CnEOm at the water/air interface were determined. For the study, six CnEOm surfactants were selected (n = 10, 12 and 14 and m = 4, 5 and 8) and were studied by bubble profile analysis and maximum bubble pressure tensiometry. A refined theoretical model based on a reorientation-adsorption model combined with a diffusion-controlled adsorption kinetics and exchange of matter allowed us to calculate the surface layer composition by adsorbing molecules in different orientations. It turns out that at larger surface coverage, the adsorption rate decreases, i.e., the apparent diffusion coefficients are smaller. This deceleration can be explained by the transition of molecules adsorbed in a state of larger molar surface area into a state with smaller molar surface area

    Cooperative Effects in Surfactant Adsorption Layers at Water/Alkane Interfaces

    No full text
    In the present work, the properties of dodecyl dimethyl phosphine oxide (C12DMPO) at the water/decane interface are studied and compared with those obtained earlier at the interface to hexane. To simulate the interfacial behavior, a two-component thermodynamic model is proposed, which combines the equation of state and Frumkin isotherm for decane with the reorientation model involving the intrinsic compressibility for the surfactant. In this approach, the surface activity of decane is governed by its interaction with C12DMPO. The theory predicts the influence of decane on the decrease of the surface tension at a very low surfactant concentration for realistic values of the ratio of the adsorbed amounts of decane and surfactant. The surfactant’s distribution coefficient between the aqueous and decane phases is determined. Two types of adsorption systems were used: a decane drop immersed into the C12DMPO aqueous solution, and a water drop immersed into the C12DMPO solution in decane. To determine the distribution coefficient, a method based on the analysis of the transfer of C12DMPO between water and decane is also employed

    Multilayer Adsorption of Heptane Vapor at Water Drop Surfaces

    Get PDF
    The measured dynamic surface tension of a water drop in air saturated by heptane vapor shows a sharp decrease from about 60 mN m−1 to 40 mN m−1, and less after a certain adsorption time. The observed adsorption kinetics is analyzed by a theoretical model based on multilayer adsorption of alkanes from the vapor phase at the water surface. The model assumes a dependence of the kinetic coefficients of adsorption and desorption on the surface coverage and in equilibrium it reduces to the classical Brunauer–Emmett–Teller adsorption isotherm. The calculated time dependencies of adsorption and surface tension agree well with experimental data and predict a five-layer adsorption of heptane

    Equilibrium and dynamic surface properties of trisiloxane aqueous solutions. Part 2. Theory and comparison with experiment

    Get PDF
    In the first part of this paper we presented experimental results, which shows the presence of surface aggregates in aqueous solutions of trisiloxane surfactants (Ritacco et al. [1]). Formation of those aggregates has been found for those trisiloxanes (T6, T7, T8, and T9), which show superspreading behaviour at room temperature. However, the formation of surface aggregates has not been detected for trisiloxanes (T4 and T5), which do not show superspreading behaviour at room temperature. It is shown that experimental results on equilibrium and dynamic interfacial tension agree well with a combined theoretical model, which is based on reorientation (or two states) and aggregation models. According to the reorientation model there are two states of trisiloxane molecules on the surface layer: molecules in those two states occupy different surface areas. The aggregation model was modified to account for specific properties of trisiloxane molecules. According to that model molecules occupying the lowest area on the interface can form two-dimensional aggregates. It was assumed that trisiloxane molecules include two kinetically independent trimethylsilyl [-O-Si(CH3)3] groups. This assumption allowed us to agree the aggregation theoretical model and experimental data on ellipsometric measurement of adsorption. © 2010 Elsevier B.V.Fil: Ritacco, Hernán Alejandro. Universidad Complutense de Madrid; EspañaFil: Fainerman, Valentin B.. Donetsk Medical University; UcraniaFil: Ortega, Francisco. Universidad Complutense de Madrid; EspañaFil: Rubio, Ramon G.. Universidad Complutense de Madrid; EspañaFil: Ivanova, Natalia. Loughborough University; Reino UnidoFil: Starov, Victor M.. Loughborough University; Reino Unid
    corecore