15 research outputs found

    Copy Number Variation in Inflammatory Breast Cancer

    No full text
    Identification of a unique genomic biomarker in de novo inflammatory breast cancer (IBC) may provide an insight into the biology of this aggressive disease. The goal of our study was to elucidate biomarkers associated with IBC. We examined breast biopsies collected from Dana–Farber Cancer Institute patients with IBC prior to initiating preoperative systemic treatment (30 samples were examined, of which 14 were eligible). Patients without available biopsies (n = 1), with insufficient tumor epithelial cells (n = 10), or insufficient DNA yield (n = 5) were excluded from the analysis. Molecular subtype and tumor grade were abstracted from a medical records’ review. Ten IBC tumors were estrogen-receptor-positive (ER+) and human epidermal growth factor receptor 2 (HER2)-negative (n = 10 out of 14). Sufficient RNA and DNA were simultaneously extracted from 14 biopsy specimens using the Qiagen AllPrep Kit. RNA was amplified using the Sensation kit and profiled using the Affymetrix Human Transcriptome Array 2.0. DNA was profiled for genome-wide copy number variation (CNV) using the Affymetrix OncoScan Array and analyzed using the Nexus Chromosome Analysis Suite. Among the 14 eligible samples, we first confirmed biological concordance and quality control metrics using replicates and gene expression data. Second, we examined CNVs and gene expression change by IBC subtype. We identified significant CNVs in IBC patients after adjusting for multiple comparisons. Next, to assess whether the CNVs were unique to IBC, we compared the IBC CNV data to fresh-frozen non-IBC CNV data from The Cancer Genome Atlas (n = 388). On chromosome 7p11.2, we identified significant CN gain located at position 58,019,983-58,025,423 in 8 ER+ IBC samples compared to 338 non-IBC ER+ samples (region length: 5440 bp gain and 69,039 bp, False Discovery Rate (FDR) p-value = 3.12 × 10−10) and at position 57,950,944–58,025,423 in 3 TN-IBC samples compared to 50 non-IBC TN samples (74,479 base pair, gain, FDR p-value = 4.27 × 10−5; near the EGFR gene). We also observed significant CN loss on chromosome 21, located at position 9,648,315–9,764,385 (p-value = 4.27 × 10−5). Secondarily, differential gene expression in IBC patients with 7p11.2 CN gain compared to SUM149 were explored after FDR correction for multiple testing (p-value = 0.0016), but the results should be interpreted with caution due to the small sample size. Finally, the data presented are hypothesis-generating. Validation of CNVs that contribute to the unique presentation and biological features associated with IBC in larger datasets may lead to the optimization of treatment strategies

    Clinical outcomes of de novo metastatic HER2-positive inflammatory breast cancer

    No full text
    Abstract Inflammatory breast cancer (IBC) is a rare, aggressive form of breast cancer that presents as de novo metastatic disease in 20–30% of cases, with one-third of cases demonstrating HER2-positivity. There has been limited investigation into locoregional therapy utilization following HER2-directed systemic therapy for these patients, and their locoregional progression or recurrence (LRPR) and survival outcomes. Patients with de novo HER2-positive metastatic IBC (mIBC) were identified from an IRB-approved IBC registry at Dana-Farber Cancer Institute. Clinical, pathology, and treatment data were abstracted. Rates of LRPR, progression-free survival (PFS), overall survival (OS), and pathologic complete response (pCR) were determined. Seventy-eight patients diagnosed between 1998 and 2019 were identified. First-line systemic therapy comprised chemotherapy for most patients (97.4%) and HER2-directed therapy for all patients (trastuzumab [47.4%]; trastuzumab+pertuzumab [51.3%]; or trastuzumab emtansine [1.3%]). At a median follow-up of 2.7 years, the median PFS was 1.0 year, and the median OS was 4.6 years. The 1- and 2-year cumulative incidence of LRPR was 20.7% and 29.0%, respectively. Mastectomy was performed after systemic therapy in 41/78 patients (52.6%); 10 had a pCR (24.4%) and all were alive at last follow-up (1.3–8.9 years after surgery). Among 56 patients who were alive and LRPR-free at one year, 10 developed LRPR (surgery group = 1; no-surgery group = 9). In conclusion, patients with de novo HER2-positive mIBC who undergo surgery have favorable outcomes. More than half of patients received systemic and local therapy with good locoregional control and prolonged survival, suggesting a potential role for local therapy
    corecore