318 research outputs found
Seasonal variations of anhydrosugars in PM2.5 in the Pearl River Delta Region, China
Anhydrosugars including levoglucosan and mannosan are the most effective organic tracers for biomass burning aerosol in the atmosphere. In this study, to investigate the contribution of biomass burning emissions to the aerosol burden in the Pearl River Delta (PRD) region, China, 24-hour integrated PM2.5 samples were collected simultaneously at four locations, (i) Guangzhou (GZ), (ii) Zhaoqing (ZQ) in Guangdong province, (iii) Hok Tsui (HT) and (iv) Hong Kong Polytechnic University (PU) in Hong Kong, in four seasons between 2006 and 2007. Levoglucosan and mannosan, together with water-soluble inorganic ions and water-soluble organic carbon (WSOC), were determined to elucidate the seasonal and spatial variations in biomass burning contributions. The concentrations of levoglucosan and mannosan were on average 82.4±123 and 5.8±8.6 ng m−3, respectively. The WSOC concentrations ranged from 0.2 to 9.4 µg m−3, with an average of 2.1±1.6 µg m−3. The relative contributions of biomass burning emissions to OC were 33% in QZ, 12% in GZ, 4% at PU and 5% at HT, respectively, estimated by the measured levoglucosan to organic carbon ratio (LG/OC) relative to literature-derived LG/OC values. The contributions from biomass burning emissions were in general 1.7–2.8 times higher in winter than those in other seasons. Further, it was inferred from diagnostic tracer ratios that a significant fraction of biomass burning emissions was derived from burning of hard wood and likely also from field burning of agricultural residues, such as rice straw, in the PRD region. Our results highlight the contributions from biomass/biofuel burning activities on the regional aerosol budget in South China
Short GRB 130603B: Discovery of a jet break in the optical and radio afterglows, and a mysterious late-time X-ray excess
We present radio, optical/NIR, and X-ray observations of the afterglow of the
short-duration 130603B, and uncover a break in the radio and optical bands at
0.5 d after the burst, best explained as a jet break with an inferred jet
opening angle of 4-8 deg. GRB 130603B is only the third short GRB with a radio
afterglow detection to date, and the first time that a jet break is evident in
the radio band. We model the temporal evolution of the spectral energy
distribution to determine the burst explosion properties and find an
isotropic-equivalent kinetic energy of (0.6-1.7) x 10^51 erg and a circumburst
density of 5 x 10^-3-30 cm^-3. From the inferred opening angle of GRB 130603B,
we calculate beaming-corrected energies of Egamma (0.5-2) x 10^49 erg and EK
(0.1-1.6) x 10^49 erg. Along with previous measurements and lower limits we
find a median short GRB opening angle of 10 deg. Using the all-sky observed
rate of 10 Gpc^-3 yr^-1, this implies a true short GRB rate of 20 yr^-1 within
200 Mpc, the Advanced LIGO/VIRGO sensitivity range for neutron star binary
mergers. Finally, we uncover evidence for significant excess emission in the
X-ray afterglow of GRB 130603B at >1 d and conclude that the additional energy
component could be due to fall-back accretion or spin-down energy from a
magnetar formed following the merger.Comment: Submitted to ApJ; emulateapj style; 10 pages, 1 table, 3 figure
Characterization and health risk assessment of airborne pollutants in commercial restaurants in northwestern China: Under a low ventilation condition in wintertime
Impacts on indoor air quality of dining areas from cooking activities were investigated in eight categories of commercial restaurants including Szechwan Hotpot, Hunan, Shaanxi Noodle, Chinese Barbecue, Chinese Vegetarian, Korean Barbecue, Italian, and Indian, in Northwestern China during December 2011 to January 2012. Chemical characterization and health risk assessment for airborne carbonyls, and particulate-bound polycyclic aromatic hydrocarbons (PAHs) and heavy metals were conducted under low ventilation conditions in wintertime. The highest total quantified carbonyls (Sigma(carbonyls)) concentration of 313.6 mu g m(-3) was found in the Chinese Barbecue, followed by the Szechwan Hotpot (222.6 mu g m(-3)) and Indian (221.9 mu g m(-3)) restaurants. However, the highest Sigma(carbonyls) per capita was found at the Indian restaurant (4500 mu g capita(-1)), suggesting that cooking methods such as stir-fly and bake for spices ingredients released more carbonyls from thermal cooking processes. Formaldehyde, acetaldehyde, and acetone were the three most abundant species, totally accounting for >60% of mass concentrations of the Sigma(carbonyls). Phenanthrene, chrysene, and benzo[a]anthracene were the three most abundant PAHs. Low molecular weight fraction (Sigma PAHs(<= 178)) had the highest contributions accounting for 40.6%-65.7%, much greater than their heaver counterparts. Diagnostic PAHs ratios suggest that cooking fuel and environmental tobacco smoke (ETS) contribute to the indoor PAHs profiles. Lead was the most abundant heavy metal in all sampled restaurants. High quantity of nickel was also found in samples due to the emissions from stainless-steel made kitchen utensils and cookware and ETS. Cancer risk assessments on the toxic substances demonstrate that the working environment of dining areas were hazard to health. Formation of reactive organic species (ROS) from the cooking activities was evidenced by measurement of hydroxyl radical (center dot OH) formed from simulating particulate matter (PM) react with surrogate lung fluid. The highest center dot OH concentration of 294.4 ng m(-3) was detected in Chinese Barbecue. In addition, the elevation of the concentrations of PM and center dot OH after non-dining periods implies that the significance of formation of oxidizing-active species indoor at poor ventilation environments. (c) 2018 Elsevier B.V. All rights reserved
Evaluation of hazardous airborne carbonyls in five urban roadside dwellings: A comprehensive indoor air assessment in Sri Lanka
Indoor hazardous airborne carbonyls were quantified in five natural-ventilated roadside dwellings in Colombo, Sri Lanka. The total concentrations of all targeted carbonyls ranged from 13.6 to 18.6 mu g/m(3). Formaldehyde (C1) was the most abundant carbonyl, followed by acetaldehyde (C2) and acetone (C3K). The concentrations of C1 and C2 ranged from 3.3 to 8.5 mu g/m(3) and 2.3 to 4.4 mu g/m(3), respectively, which accounted for 23 to 42% and 18 to 26% respectively, to the total quantified carbonyls. The highest carbonyls levels were obtained in the dwelling located in an urban district with a mixture of industrial, commercial and residential areas. Much lower concentrations of carbonyls were measured in a light local traffic value was counted. Moderate correlations between individual combustion markers from vehicular emissions suggest the strong impacts from traffics to the indoor airs. The concentrations of C1 and C2 were compared with international indoor guidelines established by different authorities. A health assessment was conducted by estimation of inhalation cancer risk, implementing the inhalation unit risk values provided by Integrated Risk Information System (IRIS), associated with C1 and C2, which were 6.2 x 10(-5) and 7.7 x 10(-6), respectively. Even though the risks did not reach the action level (1 x 10(-4)), their health impact should not be overlooked. This kick-off indoor monitoring study provides valuable scientific data to the environmental science community since only limit data is available in Sri Lanka
DCE-MRI for pre-treatment prediction and post-treatment assessment of treatment response in sites of squamous cell carcinoma in the head and neck
Background and Purpose It is important to identify patients with head and neck squamous cell carcinoma (SCC) who fail to respond to chemoradiotherapy so that they can undergo post-treatment salvage surgery while the disease is still operable. This study aimed to determine the diagnostic performance of dynamic contrast enhanced (DCE)-MRI using a pharmacokinetic model for pre-treatment predictive imaging, as well as post-treatment diagnosis, of residual SCC at primary and nodal sites in the head and neck. Material and Methods Forty-nine patients with 83 SCC sites (primary and/or nodal) underwent pre-treatment DCEMRI, and 43 patients underwent post-treatment DCE-MRI, of which 33 SCC sites had a residual mass amenable to analysis. Pre-treatment, post-treatment and %change in the mean Ktrans, kep, ve and AUGC were obtained from SCC sites. Logistic regression was used to correlate DCE parameters at each SCC site with treatment response at the same site, based on clinical outcome at that site at a minimum of two years. Results None of the pre-treatment DCE-MRI parameters showed significant correlations with SCC site failure (SF) (29/83 sites) or site control (SC) (54/83 sites). Post-treatment residual masses with SF (14/33) had significantly higher kep (p = 0.05), higher AUGC (p = 0.02), and lower % reduction in AUGC (p = 0.02), than residual masses with SC (19/33), with the% change in AUGC remaining significant on multivariate analysis. Conclusion Pre-treatment DCE-MRI did not predict which SCC sites would fail treatment, but post-treatment DCE-MRI showed potential for identifying residual masses that had failed treatment
DCE-MRI for pre-treatment prediction and post-treatment assessment of treatment response in sites of squamous cell carcinoma in the head and neck
Background and Purpose It is important to identify patients with head and neck squamous cell carcinoma (SCC) who fail to respond to chemoradiotherapy so that they can undergo post-treatment salvage surgery while the disease is still operable. This study aimed to determine the diagnostic performance of dynamic contrast enhanced (DCE)-MRI using a pharmacokinetic model for pre-treatment predictive imaging, as well as post-treatment diagnosis, of residual SCC at primary and nodal sites in the head and neck. Material and Methods Forty-nine patients with 83 SCC sites (primary and/or nodal) underwent pre-treatment DCEMRI, and 43 patients underwent post-treatment DCE-MRI, of which 33 SCC sites had a residual mass amenable to analysis. Pre-treatment, post-treatment and %change in the mean Ktrans, kep, ve and AUGC were obtained from SCC sites. Logistic regression was used to correlate DCE parameters at each SCC site with treatment response at the same site, based on clinical outcome at that site at a minimum of two years. Results None of the pre-treatment DCE-MRI parameters showed significant correlations with SCC site failure (SF) (29/83 sites) or site control (SC) (54/83 sites). Post-treatment residual masses with SF (14/33) had significantly higher kep (p = 0.05), higher AUGC (p = 0.02), and lower % reduction in AUGC (p = 0.02), than residual masses with SC (19/33), with the% change in AUGC remaining significant on multivariate analysis. Conclusion Pre-treatment DCE-MRI did not predict which SCC sites would fail treatment, but post-treatment DCE-MRI showed potential for identifying residual masses that had failed treatment
- …