87 research outputs found

    Modeling of multicomponents reactive transport in saturated porous media

    No full text
    La modélisation du transport réactif se fait séquentiellement avec l'approche de séparation d'opérateur (OS) ou bien simultanément avec l'approche globale (GA). Les premiers travaux de modélisation de transport réactif ont montré la supériorité de (OS) par rapport à (GA). Des travaux récents ont cependant mis en évidence la faiblesse de OS dans certaines configurations. Dans la première partie de ce travail nous avons étudié les approches (OS) et (GA) dans différentes configurations chimie-transport. Afin d'éviter l'inconvénient majeur de (GA), à savoir son coût élevé en temps de calcul, on a développé un nouveau modèle de calcul robuste et efficace. Les résultats qu on a obtenus montrent qu avec ce modèle, (GA) devient plus efficace et plus précise que (OS). Cet avantage devient prononcé dans le cas d'une chimie complexe avec des réactions de sorption et/ou de précipitation/dissolution.La deuxième partie de ce travail s'intéresse au développement des schémas numériques pour la modélisation du transport réactif. La plupart des modèles existants utilisent des méthodes Eulériennes qui imposent des discrétisations très fines en espace et en temps et par conséquent des temps de calculs prohibitifs. Afin de remédier à ce problème on a utilisé la méthode ELLAM. L'objectif de ce travail est de développer les potentialités des méthodes ELLAM pour résoudre le problème du transport réactif. Une première étape consiste à combiner les ELLAM avec OS et GA. Les résultats obtenus montrent que pour les réactions cinétiques OS_ELLAM est la plus efficace. Cependant, pour les réactions à l'équilibre, ELLAM_GA devient préférable.La deuxième étape est l'amélioration des ELLAM afin d'éviter le problème de diffusion numérique. On a donc développé une nouvelle formulation des ELLAM. Cette formulation a été testée pour le transport linéaire et non linéaire. Les résultats montrent que notre nouvelle approche n est pas sensible au pas de temps et évite toute diffusion numérique.The modeling of reactive transport is done sequentially with the operator splitting approach or simultaneously with the global approach. The first work in reactive transport showed the superiority of (OS) compared to (GA). However, recent work highlighted the OS weakness in certain configurations. In the first part of this work we studied the tow approaches (OS) and (GA) for various configurations of chemistry-transport. In order to avoid the major disadvantage of (GA), who is the high cost in CPU time, we developed a new efficient and robust model. The obtained results show that, with this model, (GA) becomes more efficient and more precise than (OS). This advantage becomes more important in the case of complex chemistry with sorption and precipitation/dissolution reactions.The second part of this work is interested to the development of numerical schemes for modeling reactive transport. In fact, the majority of the existing models use Eulerian methods for the transport equations. These methods require a very fine space and time discretization and consequently a prohibitory CPU times. In order to solve this problem, we use in this work the Eulerian Lagrangian Localized Adjoint Method (ELLAM). The objective of this work is to develop the potentialities of ELLAM to solve the reactive transport problem.The first step of this part consists in combining the ELLAM with OS and GA. The obtained results show that for kinetic reactions, OS_ELLAM is more efficient than GA_ELLAM. However, for the equilibrium reactions, ELLAM_GA becomes preferable.The second step is the improvement of the ELLAM in order to avoid the numerical diffusion problem. A new formulation of ELLAM is developed. This formulation was tested for linear and nonlinear transport. The result shows that our new approach is less sensitive to the time step and avoids any numerical diffusion

    Modeling of multicomponents reactive transport in saturated porous media

    No full text
    La modélisation du transport réactif se fait séquentiellement avec l'approche de séparation d'opérateur (OS) ou bien simultanément avec l'approche globale (GA). Les premiers travaux de modélisation de transport réactif ont montré la supériorité de (OS) paThe modeling of reactive transport is done sequentially with the operator splitting approach or simultaneously with the global approach. The first work in reactive transport showed the superiority of (OS) compared to (GA). However, recent work highlighte

    3D semi-analytical solution for density driven flow in saturated porous media

    No full text
    International audienc

    Modélisation du transport réactif multicomposants en milieu poreux saturé

    No full text
    La modélisation du transport réactif se fait séquentiellement avec l approche de séparation d opérateur (OS) ou bien simultanément avec l approche globale (GA). Les premiers travaux de modélisation de transport réactif ont montré la supériorité de (OS) par rapport à (GA). Des travaux récents ont cependant mis en évidence la faiblesse de OS dans certaines configurations. Dans la première partie de ce travail nous avons étudié les approches (OS) et (GA) dans différentes configurations chimie-transport. Afin d éviter l inconvénient majeur de (GA), à savoir son coût élevé en temps de calcul, on a développé un nouveau modèle de calcul robuste et efficace. Les résultats qu on a obtenus montrent qu avec ce modèle, (GA) devient plus efficace et plus précise que (OS). Cet avantage devient prononcé dans le cas d une chimie complexe avec des réactions de sorption et/ou de précipitation/dissolution.La deuxième partie de ce travail s intéresse au développement des schémas numériques pour la modélisation du transport réactif. La plupart des modèles existants utilisent des méthodes Eulériennes qui imposent des discrétisations très fines en espace et en temps et par conséquent des temps de calculs prohibitifs. Afin de remédier à ce problème on a utilisé la méthode ELLAM. L objectif de ce travail est de développer les potentialités des méthodes ELLAM pour résoudre le problème du transport réactif. Une première étape consiste à combiner les ELLAM avec OS et GA. Les résultats obtenus montrent que pour les réactions cinétiques OS_ELLAM est la plus efficace. Cependant, pour les réactions à l équilibre, ELLAM_GA devient préférable.La deuxième étape est l amélioration des ELLAM afin d éviter le problème de diffusion numérique. On a donc développé une nouvelle formulation des ELLAM. Cette formulation a été testée pour le transport linéaire et non linéaire. Les résultats montrent que notre nouvelle approche n est pas sensible au pas de temps et évite toute diffusion numérique.The modeling of reactive transport is done sequentially with the operator splitting approach or simultaneously with the global approach. The first work in reactive transport showed the superiority of (OS) compared to (GA). However, recent work highlighted the OS weakness in certain configurations. In the first part of this work we studied the tow approaches (OS) and (GA) for various configurations of chemistry-transport. In order to avoid the major disadvantage of (GA), who is the high cost in CPU time, we developed a new efficient and robust model. The obtained results show that, with this model, (GA) becomes more efficient and more precise than (OS). This advantage becomes more important in the case of complex chemistry with sorption and precipitation/dissolution reactions.The second part of this work is interested to the development of numerical schemes for modeling reactive transport. In fact, the majority of the existing models use Eulerian methods for the transport equations. These methods require a very fine space and time discretization and consequently a prohibitory CPU times. In order to solve this problem, we use in this work the Eulerian Lagrangian Localized Adjoint Method (ELLAM). The objective of this work is to develop the potentialities of ELLAM to solve the reactive transport problem.The first step of this part consists in combining the ELLAM with OS and GA. The obtained results show that for kinetic reactions, OS_ELLAM is more efficient than GA_ELLAM. However, for the equilibrium reactions, ELLAM_GA becomes preferable.The second step is the improvement of the ELLAM in order to avoid the numerical diffusion problem. A new formulation of ELLAM is developed. This formulation was tested for linear and nonlinear transport. The result shows that our new approach is less sensitive to the time step and avoids any numerical diffusion.STRASBOURG-Sc. et Techniques (674822102) / SudocSudocFranceF

    A Reference Benchmark Solution for Free Convection in A Square Cavity Filled with A Heterogeneous Porous Medium

    No full text
    International audienceThe Fourier-Galerkin (FG) method is used to produce a highly accurate solution for free convection in a square cavity filled with heterogeneous porous medium. To this end, the governing equations are reformulated in terms of the temperature and the stream function. These unknowns are then expanded in infinite Fourier series truncated at given orders. The accuracy of the FG solution is investigated for different truncation orders and compared to the results of an advanced finite-element numerical model using fine-mesh discretization. The obtained results represent a set of high-quality data that can be used for benchmarking numerical models

    Algorithms for activity correction models for geochemical speciation and reactive transport modeling

    No full text
    International audienceReactive transport softwares are today one of the cornerstones of environmental research. They contain multiphysics with very complex algorithms, including flow, transport, chemical and sometimes heat transport, mechanical and/or biological algorithms. Because of this complexity, some parts of these algorithms still have not been sufficiently studied. In this work, we focus on algorithms for activity correction, a specific subset of equilibrium chemistry algorithms. We show that the most used algorithm (the inner fixed-point algorithm) or the most rigorous algorithm (the full Newton) might not be the most efficient, and we propose a new one, the outer fixed-point algorithm, which is more robust and faster than other algorithms

    Semi-Analytical Solution to Assess CO2 Leakage in the Subsurface through Abandoned Wells

    No full text
    International audienceGeological carbon storage is an effective method capable of reducing carbon dioxide (CO2) emissions at significant scales. Subsurface reservoirs with sealing caprocks can provide long-term containment for the injected fluid. Nevertheless, CO2 leakage is a major concern. The presence of abandoned wells penetrating the reservoir caprock may cause leakage flow-paths for CO2 to the overburden. Assessment of time-varying leaky wells is a need. In this paper, we propose a new semi-analytical approach based on pressure-transient analysis to model the behavior of CO2 leakage and corresponding pressure distribution within the storage site and the overburden. Current methods assume instantaneous leakage of CO2 occurring with injection, which is not realistic. In this work, we employ the superposition in time and space to solve the diffusivity equation in 2D radial flow to approximate the transient pressure in the reservoirs. Fluid and rock compressibilities are taken into consideration, which allow calculating the breakthrough time and the leakage rate of CO2 to the overburden accurately. We use numerical simulations to verify the proposed time-dependent semi-analytical solution. The results show good agreement in both pressure and leakage rates. Sensitivity analysis is then conducted to assess different CO2 leakage scenarios to the overburden. The developed semi-analytical solution provides a new simple and practical approach to assess the potential of CO2 leakage outside the storage site. This approach is an alternative to numerical methods when detailed simulations are not feasible. Furthermore, the proposed solution can also be used to verify numerical codes, which often exhibit numerical artifacts

    Modeling of Flow and Transport in Saturated and Unsaturated Porous Media

    No full text
    International audienceModeling fluid flow and transport processes in porous media is a relevant topic for a wide range of applications. In water resources problems, this topic presents specific challenges related to the multiphysical processes, large time and space scales, heterogeneity and anisotropy of natural porous media, and complex mathematical models characterized by coupled nonlinear equations. This Special Issue aims at collecting papers presenting new developments in the field of flow and transport in porous media. The 25 published papers deal with different aspects of physical processes and applications such as unsaturated and saturated flow, flow in fractured porous media, landslide, reactive transport, seawater intrusion, and transport within hyporheic zones. Based on their objectives, we classified these papers into four categories: (i) improved numerical methods for flow and mass transport simulation, (ii) looking for reliable models and parameters, (iii) laboratory scale experiments and simulations, and (iv) modeling and simulations for improved process understanding. Current trends on modeling fluid flow and transport processes in porous media are discussed in the conclusion

    Assessment of CO<sub>2</sub> Injectivity During Sequestration in Depleted Gas Reservoirs

    No full text
    Depleted gas reservoirs are appealing targets for carbon dioxide (CO 2 ) sequestration because of their storage capacity, proven seal, reservoir characterization knowledge, existing infrastructure, and potential for enhanced gas recovery. Low abandonment pressure in the reservoir provides additional voidage-replacement potential for CO 2 and allows for a low surface pump pressure during the early period of injection. However, the injection process poses several challenges. This work aims to raise awareness of key operational challenges related to CO 2 injection in low-pressure reservoirs and to provide a new approach to assessing the phase behavior of CO 2 within the wellbore. When the reservoir pressure is below the CO 2 bubble-point pressure, and CO 2 is injected in its liquid or supercritical state, CO 2 will vaporize and expand within the well-tubing or in the near-wellbore region of the reservoir. This phenomenon is associated with several flow assurance problems. For instance, when CO 2 transitions from the dense-state to the gas-state, CO 2 density drops sharply, affecting the wellhead pressure control and the pressure response at the well bottom-hole. As CO 2 expands with a lower phase viscosity, the flow velocity increases abruptly, possibly causing erosion and cavitation in the flowlines. Furthermore, CO 2 expansion is associated with the Joule&#8722;Thomson (IJ) effect, which may result in dry ice or hydrate formation and therefore may reduce CO 2 injectivity. Understanding the transient multiphase phase flow behavior of CO 2 within the wellbore is crucial for appropriate well design and operational risk assessment. The commonly used approach analyzes the flow in the wellbore without taking into consideration the transient pressure response of the reservoir, which predicts an unrealistic pressure gap at the wellhead. This pressure gap is related to the phase transition of CO 2 from its dense state to the gas state. In this work, a new coupled approach is introduced to address the phase behavior of CO 2 within the wellbore under different operational conditions. The proposed approach integrates the flow within both the wellbore and the reservoir at the transient state and therefore resolves the pressure gap issue. Finally, the energy costs associated with a mitigation process that involves CO 2 heating at the wellhead are assessed
    • …
    corecore