23 research outputs found

    Individuals with Wiedemann-Steiner syndrome show nonverbal reasoning and visuospatial defects with relative verbal skill sparing

    Get PDF
    OBJECTIVES: Wiedemann-Steiner syndrome (WSS) is a rare Mendelian disorder of the epigenetic machinery caused by heterozygous pathogenic variants in KMT2A. Currently, the specific neurocognitive profile of this syndrome remains unknown. This case series provides insight into the cognitive phenotype of WSS. METHODS: This study involves a retrospective medical chart review of 10 pediatric patients, each with a molecularly confirmed diagnosis of WSS who underwent clinical neuropsychological evaluation at an academic medical center. RESULTS: The majority of patients performed in the below average to very low ranges in Nonverbal Reasoning, Visual/Spatial Perception, Visuoconstruction, Visual Memory, Attention, Working Memory and Math Computation skills. In contrast, over half the sample performed within normal limits on Receptive Vocabulary, Verbal Memory, and Word Reading. Wilcoxon signed rank test showed weaker Nonverbal versus Verbal Reasoning skills (p = .005). Most caregivers reported deficits in executive functioning, most notably in emotion regulation. CONCLUSIONS: Nonverbal reasoning/memory, visuospatial/construction, attention, working memory, executive functioning, and math computation skills are areas of weakness among those with WSS. These findings overlap with research on Kabuki syndrome, which is caused by variants in KMT2D, and suggest disruption in the neurogenesis of the hippocampal formation may drive shared pathogenesis of the two syndromes.Peer reviewe

    Sleep disturbances correlate with behavioral problems among individuals with Wiedemann-Steiner syndrome

    Get PDF
    Funding Information: RN would like to acknowledge support for open access publication from NIH (R25 NS117356). HB and RN are supported by grants from the WSS Foundation, JF has support from The Hartwell Foundation (Individual Biomedical Research Award) and the NIH (K08HD086250), and JH has support from the National Institute of Child Health and Development (K23HD101646). This study was also supported by Kennedy Krieger IDDRC NIH (P50HD103538). Publisher Copyright: Copyright © 2022 Ng, Bjornsson, Fahrner and Harris.Wiedemann-Steiner syndrome (WSS) is a rare genetic disorder caused by mutation in KMT2A and characterized by neurodevelopmental delay. This study is the first prospective investigation to examine the sleep and behavioral phenotypes among those with WSS through parent-informant screening inventories. A total of 24 parents of children/adults with WSS (11F, Mean age = 12.71 years, SD = 8.17) completed the Strengths and Difficulties Questionnaire (SDQ) and 22 of these caregivers also completed the Modified Simonds and Parraga Sleep Questionnaire (MSPSQ). On average, the majority of those with WSS (83%) were rated to show borderline to clinical level of behavioral difficulties on the SDQ. Approximately 83% were rated in these ranges for hyperactivity, 63% for emotional problems, and 50% for conduct problems. When applying prior published clinical cut-off for risk of sleep disturbance among those with neurodevelopmental disorders, over 80% of our sample exceeded this limit on the MSPSQ. Largely, caregivers’ ratings suggested restless sleep, rigid bedtime rituals, sleep reluctance and breathing through the mouth in sleep were most consistent problems observed. Partial correlations between sleep and behavioral domains showed elevated emotional problems were associated with parasomnia characteristics after controlling for age. Daytime drowsiness and activity were associated with more hyperactivity. Those with more night waking problems and delayed sleep onset were rated to show more severe conduct problems. Overall, these findings suggest dysfunctional sleep behaviors, hyperactivity, and affective problems are part of the neurobehavioral phenotype of WSS. Routine clinical care for those affected by WSS should include close monitoring of sleep and overactive behaviors.Peer reviewe

    Unique profile of academic learning difficulties in Wiedemann–Steiner syndrome

    Get PDF
    Funding Information: R.N. and H.T.B. are supported by grants from the Wiedemann‐Steiner Syndrome Foundation. J.A.F. acknowledges support from The Hartwell Foundation (Individual Biomedical Research Award) and the National Institute of Child Health and Development (NICHD)(K08HD086250). J.H. acknowledges support from the NICHD (K23HD101646). R.N. also received research support from NICHD (P50HD103538). Publisher Copyright: © 2022 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.Background: Wiedemann–Steiner syndrome (WSS) is a rare genetic disorder caused by heterozygous variants in KMT2A. To date, the cognitive profile associated with WSS remains largely unknown, although emergent case series implicate increased risk of non-verbal reasoning and visual processing deficits. This study examines the academic and learning concerns associated with WSS based on a parent-report screening measure. Participants and Methods: A total of 25 parents of children/adults with a molecularly-confirmed diagnosis of WSS (mean age = 12.85 years, SD = 7.82) completed the Colorado Learning Difficulties Questionnaire (CLDQ), a parent-screening measure of learning and academic difficulties. Parent ratings were compared to those from a normative community sample to determine focal areas in Math, Reading and Spatial skills that may be weaker within this clinical population. Results: On average, parent ratings on the Math (mean Z = -3.08, SD = 0.87) and Spatial scales (mean Z = -2.52, SD = 0.85) were significantly more elevated than that of Reading (mean Z = -1.31, SD = 1.46) (Wilcoxon sign rank test Z < −3.83, P < 0.001), reflecting relatively more challenges observed in these areas. Distribution of parent ratings in Math items largely reflect a positively skewed distribution with most endorsing over three standard deviations below a community sample. In contrast, distributions of parent ratings in Reading and Spatial domains were more symmetric but flat. Ratings for Reading items yielded much larger variance than the other two domains, reflecting a wider range of performance variability. Conclusions: Parent ratings on the CLDQ suggest more difficulties with Math and Spatial skills among those with WSS within group and relative to a community sample. Study results are consistent with recent case reports on the neuropsychological profile associated with WSS and with Kabuki syndrome, which is caused by variants in the related gene KMT2D. Findings lend support for overlapping cognitive patterns across syndromes, implicating potential common disease pathogenesis.Peer reviewe

    Genome-wide DNA methylation profiling confirms a case of low-level mosaic Kabuki syndrome 1

    Get PDF
    Kabuki syndrome is a Mendelian disorder of the epigenetic machinery characterized by typical dysmorphic features, intellectual disability, and postnatal growth deficiency. Pathogenic variants in the genes encoding the chromatin modifiers KMT2D and KDM6A are responsible for Kabuki syndrome 1 (KS1) and Kabuki syndrome 2 (KS2), respectively. In addition, 11 cases of KS1 caused by mosaic variants in KMT2D have been reported in the literature. Some of these individuals display milder craniofacial and growth phenotypes, and most do not have congenital heart defects. We report the case of an infant with severe hypoplastic left heart syndrome with mitral atresia and aortic atresia (HLHS MA-AA), pulmonary vein stenosis, and atypical facies with a somatic mosaic de novo nonsense variant in KMT2D (c.8200C\u3eT, p.R2734*) identified on trio exome sequencing of peripheral blood and present in 11.2% of sequencing reads. KS was confirmed with EpiSign, a diagnostic genome-wide DNA methylation platform used to identify epigenetic signatures. This case suggests that use of this newly available clinical test can guide the interpretation of low-level mosaic variants identified through sequencing and suggests a new lower limit of mosaicism in whole blood required for a diagnosis of KS

    Five years of experience in the Epigenetics and Chromatin Clinic : what have we learned and where do we go from here?

    Get PDF
    Funding Information: None of the authors had specific funding for this publication, but JRH is supported by grants from the NIH/NICHD 1K23HD101646, the Kabuki Syndrome Foundation, the Rubinstein-Taybi Syndrome Children’s Foundation, the Sekel-Breidenstein Family Fund, and the Kennedy Krieger IDDRC NIH P50HD103538. HTB is supported by the Louma G. Foundation, the Icelandic Research Fund (#217988, #195835, #206806) and the Icelandic Technology Development Fund (#2010588), and JAF is supported by the National Institutes of Health, specifically the National Institute for Child Health and Human Development (NICHD; K08HD086250), the Maryland Stem Cell Research Fund (2022-MSCRFL-5846), and a Johns Hopkins Catalyst Award. CWG receives support from NIH T32GM136577. Publisher Copyright: © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.The multidisciplinary Epigenetics and Chromatin Clinic at Johns Hopkins provides comprehensive medical care for individuals with rare disorders that involve disrupted epigenetics. Initially centered on classical imprinting disorders, the focus shifted to the rapidly emerging group of genetic disorders resulting from pathogenic germline variants in epigenetic machinery genes. These are collectively called the Mendelian disorders of the epigenetic machinery (MDEMs), or more broadly, Chromatinopathies. In five years, 741 clinic visits have been completed for 432 individual patients, with 153 having confirmed epigenetic diagnoses. Of these, 115 individuals have one of 26 MDEMs with every single one exhibiting global developmental delay and/or intellectual disability. This supports prior observations that intellectual disability is the most common phenotypic feature of MDEMs. Additional common phenotypes in our clinic include growth abnormalities and neurodevelopmental issues, particularly hypotonia, attention-deficit/hyperactivity disorder (ADHD), and anxiety, with seizures and autism being less common. Overall, our patient population is representative of the broader group of MDEMs and includes mostly autosomal dominant disorders impacting writers more so than erasers, readers, and remodelers of chromatin marks. There is an increased representation of dual function components with a reader and an enzymatic domain. As expected, diagnoses were made mostly by sequencing but were aided in some cases by DNA methylation profiling. Our clinic has helped to facilitate the discovery of two new disorders, and our providers are actively developing and implementing novel therapeutic strategies for MDEMs. These data and our high follow-up rate of over 60% suggest that we are achieving our mission to diagnose, learn from, and provide optimal care for our patients with disrupted epigenetics.Peer reviewe

    Further delineation of Malan syndrome

    Get PDF
    Malan syndrome is an overgrowth disorder described in a limited number of individuals. We aim to delineate the entity by studying a large group of affected individuals. We gathered data on 45 affected individuals with a molecularly confirmed diagnosis through an international collaboration and compared data to the 35 previously reported individuals. Results indicate that height is > 2 SDS in infancy and childhood but in only half of affected adults. Cardinal facial characteristics include long, triangular face, macrocephaly, prominent forehead, everted lower lip, and prominent chin. Intellectual disability is universally present, behaviorally anxiety is characteristic. Malan syndrome is caused by deletions or point mutations of NFIX clustered mostly in exon 2. There is no genotype-phenotype correlation except for an increased risk for epilepsy with 19p13.2 microdeletions. Variants arose de novo, except in one family in which mother was mosaic. Variants causing Malan and Marshall-Smith syndrome can be discerned by differences in the site of stop codon formation. We conclude that Malan syndrome has a well recognizable phenotype that usually can be discerned easily from Marshall–Smith syndrome but rarely there is some overlap. Differentiation from Sotos and Weaver syndrome can be made by clinical evaluation only

    Mendelian disorders of the epigenetic machinery: postnatal malleability and therapeutic prospects.

    No full text
    To access publisher's full text version of this article click on the hyperlink belowhe epigenetic machinery in conjunction with the transcriptional machinery is responsible for maintaining genome-wide chromatin states and dynamically regulating gene expression. Mendelian disorders of the epigenetic machinery (MDEMs) are genetic disorders resulting from mutations in components of the epigenetic apparatus. Though individually rare, MDEMs have emerged as a collectively common etiology for intellectual disability (ID) and growth disruption. Studies in model organisms and humans have demonstrated dosage sensitivity of this gene group with haploinsufficiency as a predominant disease mechanism. The epigenetic machinery consists of three enzymatic components (writers, erasers and chromatin remodelers) as well as one non-enzymatic group (readers). A tally of the entire census of such factors revealed that although multiple enzymatic activities never coexist within a single component, individual enzymatic activities often coexist with a reader domain. This group of disorders disrupts both the chromatin and transcription states of target genes downstream of the given component but also DNA methylation on a global scale. Elucidation of these global epigenetic changes may inform our understanding of disease pathogenesis and have diagnostic utility. Moreover, many therapies targeting epigenetic marks already exist, and some have proven successful in treating cancer. This, along with the recent observation that neurological dysfunction in these disorders may in fact be treatable in postnatal life, suggests that the scientific community should prioritize this group as a potentially treatable cause of ID. Here we summarize the recent expansion and major characteristics of MDEMs, as well as the unique therapeutic prospects for this group of disorders.Icelandic Research Fund Hartwell Foundation United States Department of Health & Human Services National Institutes of Health (NIH) - USA Louma G. Foundatio

    Corrigendum to: Mendelian disorders of the epigenetic machinery: postnatal malleability and therapeutic prospects.

    No full text
    To access publisher's full text version of this article click on the hyperlink belo

    Delineation of a human Mendelian disorder of the DNA demethylation machinery: TET3 deficiency

    No full text
    Germline pathogenic variants in chromatin-modifying enzymes are a common cause of pediatric developmental disorders. These enzymes catalyze reactions that regulate epigenetic inheritance via histone post-translational modifications and DNA methylation. Cytosine methylation (5-methylcytosine [5mC]) of DNA is the quintessential epigenetic mark, yet no human Mendelian disorder of DNA demethylation has yet been delineated. Here, we describe in detail a Mendelian disorder caused by the disruption of DNA demethylation. TET3 is a methylcytosine dioxygenase that initiates DNA demethylation during early zygote formation, embryogenesis, and neuronal differentiation and is intolerant to haploinsufficiency in mice and humans. We identify and characterize 11 cases of human TET3 deficiency in eight families with the common phenotypic features of intellectual disability and/or global developmental delay; hypotonia; autistic traits; movement disorders; growth abnormalities; and facial dysmorphism. Mono-allelic frameshift and nonsense variants in TET3 occur throughout the coding region. Mono-allelic and bi-allelic missense variants localize to conserved residues; all but one such variant occur within the catalytic domain, and most display hypomorphic function in an assay of catalytic activity. TET3 deficiency and other Mendelian disorders of the epigenetic machinery show substantial phenotypic overlap, including features of intellectual disability and abnormal growth, underscoring shared disease mechanism

    A novel de novo dominant negative mutation in DNM1L impairs mitochondrial fission and presents as childhood epileptic encephalopathy

    No full text
    DNM1L encodes dynamin-related protein 1 (DRP1/DLP1), a key component of the mitochondrial fission machinery that is essential for proper functioning of the mammalian brain. Previously reported probands with de novo missense mutations in DNM1L presented in the first year of life with severe encephalopathy and refractory epilepsy, with several dying within the first several weeks after birth. In contrast, we report identical novel missense mutations in DNM1L in two unrelated probands who experienced normal development for several years before presenting with refractory focal status epilepticus and subsequent rapid neurological decline. We expand the phenotype of DNM1L-related mitochondrial fission defects, reveal common unique clinical characteristics and imaging findings, and compare the cellular impact of this novel mutation to the previously reported A395D lethal variant. We demonstrate that our R403C mutation, which resides in the assembly region of DRP1, acts by a dominant-negative mechanism and reduces oligomerization, mitochondrial fission activity, and mitochondrial recruitment of DRP1, but to a lesser extent compared to the A395D mutation. In contrast to the initial report of neonatal lethality resulting from DNM1L mutation and DRP1 dysfunction, our results show that milder DRP1 impairment is compatible with normal early development and subsequently results in a distinct set of neurological findings. In addition, we identify a common pathogenic mechanism whereby DNM1L mutations impair mitochondrial fission
    corecore