20 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Vegetation diversity in natural and agro-ecosystems of arid lands

    No full text
    Vegetation in natural desert and agro-ecosystems was investigated in the middle sector of Egypt. The vegetation was classified by the Two Way Indicator Species Analysis technique (TWINSPAN) into nine vegetational groups representing seven habitat types: desert, fallow land, winter crops of old cultivated land, summer crops of old cultivated land, Citrus orchards, winter crops of reclaimed land, and summer crops of reclaimed land. Detrended Canonical Correspondence Analysis (DCCA) demonstrates that soil factors especially soil texture, CaCO3, organic carbon and electric conductivity contribute significantly to the distribution of species. In all habitat types, species diversity is higher in winter than in summer season. The weed species diversity is greater in the reclaimed areas compared to the old cultivated land and in winter crops than in summer ones
    corecore