10 research outputs found

    The Flagellar Regulator fliT Represses Salmonella Pathogenicity Island 1 through flhDC and fliZ

    Get PDF
    Salmonella pathogenicity island 1 (SPI1), comprising a type III section system that translocates effector proteins into host cells, is essential for the enteric pathogen Salmonella to penetrate the intestinal epithelium and subsequently to cause disease. Using random transposon mutagenesis, we found that a Tn10 disruption in the flagellar fliDST operon induced SPI1 expression when the strain was grown under conditions designed to repress SPI1, by mimicking the environment of the large intestine through the use of the intestinal fatty acid butyrate. Our genetic studies showed that only fliT within this operon was required for this effect, and that exogenous over-expression of fliT alone significantly reduced the expression of SPI1 genes, including the invasion regulator hilA and the sipBCDA operon, encoding type III section system effector proteins, and Salmonella invasion of cultured epithelial cells. fliT has been known to inhibit the flagellar machinery through repression of the flagellar master regulator flhDC. We found that the repressive effect of fliT on invasion genes was completely abolished in the absence of flhDC or fliZ, the latter previously shown to induce SPI1, indicating that this regulatory pathway is required for invasion control by fliT. Although this flhDC-fliZ pathway was necessary for fliT to negatively control invasion genes, fliZ was not essential for the repressive effect of fliT on motility, placing fliT high in the regulatory cascade for both invasion and motility

    Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    Get PDF
    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways

    Crosstalk between Virulence Loci: Regulation of Salmonella enterica Pathogenicity Island 1 (SPI-1) by Products of the std Fimbrial Operon

    Get PDF
    Invasion of intestinal epithelial cells is a critical step in Salmonella infection and requires the expression of genes located in Salmonella pathogenicity island 1 (SPI-1). A key factor for SPI-1 expression is DNA adenine (Dam) methylation, which activates synthesis of the SPI-1 transcriptional activator HilD. Dam-dependent regulation of hilD is postranscriptional (and therefore indirect), indicating the involvement of unknown cell functions under Dam methylation control. A genetic screen has identified the std fimbrial operon as the missing link between Dam methylation and SPI-1. We show that all genes in the std operon are part of a single transcriptional unit, and describe three previously uncharacterized ORFs (renamed stdD, stdE, and stdF). We present evidence that two such loci (stdE and stdF) are involved in Dam-dependent control of Salmonella SPI-1: in a Dam− background, deletion of stdE or stdF suppresses SPI-1 repression; in a Dam+ background, constitutive expression of StdE and/or StdF represses SPI-1. Repression of SPI-1 by products of std operon explains the invasion defect of Salmonella Dam− mutants, which constitutively express the std operon. Dam-dependent repression of std in the ileum may be required to permit invasion, as indicated by two observations: constitutive expression of StdE and StdF reduces invasion of epithelial cells in vitro (1,000 fold) and attenuates Salmonella virulence in the mouse model (>60 fold). In turn, crosstalk between std and SPI-1 may play a role in intestinal infections by preventing expression of SPI-1 in the caecum, an intestinal compartment in which the std operon is known to be expressed

    Protein Translation and Cell Death: The Role of Rare tRNAs in Biofilm Formation and in Activating Dormant Phage Killer Genes

    Get PDF
    We discovered previously that the small Escherichia coli proteins Hha (hemolysin expression modulating protein) and the adjacent, poorly-characterized YbaJ are important for biofilm formation; however, their roles have been nebulous. Biofilms are intricate communities in which cell signaling often converts single cells into primitive tissues. Here we show that Hha decreases biofilm formation dramatically by repressing the transcription of rare codon tRNAs which serves to inhibit fimbriae production and by repressing to some extent transcription of fimbrial genes fimA and ihfA. In vivo binding studies show Hha binds to the rare codon tRNAs argU, ileX, ileY, and proL and to two prophage clusters D1P12 and CP4-57. Real-time PCR corroborated that Hha represses argU and proL, and Hha type I fimbriae repression is abolished by the addition of extra copies of argU, ileY, and proL. The repression of transcription of rare codon tRNAs by Hha also leads to cell lysis and biofilm dispersal due to activation of prophage lytic genes rzpD, yfjZ, appY, and alpA and due to induction of ClpP/ClpX proteases which activate toxins by degrading antitoxins. YbaJ serves to mediate the toxicity of Hha. Hence, we have identified that a single protein (Hha) can control biofilm formation by limiting fimbriae production as well as by controlling cell death. The mechanism used by Hha is the control of translation via the availability of rare codon tRNAs which reduces fimbriae production and activates prophage lytic genes. Therefore, Hha acts as a toxin in conjunction with co-transcribed YbaJ (TomB) that attenuates Hha toxicity

    Salmonella enterica Serovar Typhimurium Skills To Succeed in the Host: Virulence and Regulation

    No full text
    corecore