518 research outputs found
Representational momentum in the motor system?
PURPOSE: If presented with a moving object which suddenly disappears observers usually misjudge the object's last seen position as being further forward along the path of motion. This effect, called representational momentum, can also be seen in objects that change size or shape. It has been argued that the effect is due to perceptual anticipation. We tested whether a similar effect is present in the motor system. METHODS: Using stereo computer graphics we presented cubes of different sizes on a CRT monitor. In each trial three cubes were successively presented for 200 msec with increasing or decreasing size (steps of 1 cm width difference). Ten participants either compared the last cube to a comparison cube (perceptual task) or grasped the cube using a virtual haptic setup (motor task). The setup consisted of two robot arms (Phantom TM) attached to index finger and thumb. The robot arms were controlled to create forces equivalent to the forces created by real objects. The CRT monitor was viewed via a mirror such that the visual position of the cubes matched the position of the virtual haptic objects. RESULTS: In the motor task participants opened their fingers by 1.1+/-0.4 mm wider if they grasped a cube that was preceded by smaller cubes than if they grasped a cube that was preceded by larger cubes. This is the well-known representational momentum effect. In the perceptual task the effect was reversed (-2.2+/-0.4 mm). The effects correlated between observers (r=.71, p=.02). CONCLUSIONS: It seems that a representational momentum occurs also in grasping tasks. The correlation between observers suggests that the motor effect is related to the perceptual effect. However, our perceptual task showed a reversed effect. Reasons for this discrepancy will be discussed
Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy
Background: Progressive multifocal leukoencephalopathy (PML) was reported to have developed in three patients treated with natalizumab. We conducted an evaluation to determine whether PML had developed in any other treated patients.
Methods: We invited patients who had participated in clinical trials in which they received recent or long-term treatment with natalizumab for multiple sclerosis, Crohn's disease, or rheumatoid arthritis to participate. The clinical history, physical examination, brain magnetic resonance imaging (MRI), and testing of cerebrospinal fluid for JC virus DNA were used by an expert panel to evaluate patients for PML. We estimated the risk of PML in patients who completed at least a clinical examination for PML or had an MRI.
Results: Of 3417 patients who had recently received natalizumab while participating in clinical trials, 3116 (91 percent) who were exposed to a mean of 17.9 monthly doses underwent evaluation for PML. Of these, 44 patients were referred to the expert panel because of clinical findings of possible PML, abnormalities on MRI, or a high plasma viral load of JC virus. No patient had detectable JC virus DNA in the cerebrospinal fluid. PML was ruled out in 43 of the 44 patients, but it could not be ruled out in one patient who had multiple sclerosis and progression of neurologic disease because data on cerebrospinal fluid testing and follow-up MRI were not available. Only the three previously reported cases of PML were confirmed (1.0 per 1000 treated patients; 95 percent confidence interval, 0.2 to 2.8 per 1000).
Conclusions: A detailed review of possible cases of PML in patients exposed to natalizumab found no new cases and suggested a risk of PML of roughly 1 in 1000 patients treated with natalizumab for a mean of 17.9 months. The risk associated with longer treatment is not known
Membrane-transferring regions of gp41 as targets for HIV-1 fusion inhibition and viral neutralization
12 páginas, 4 figurasThe fusogenic function of HIV-1 gp41 transmembrane Env subunit relies on two different kinds of structural elements: i) a collapsible ectodomain structure (the hairpin or six-helix bundle) that opens and closes, and ii) two membrane- transferring regions (MTRs), the fusion peptide (FP) and the membrane-proximal external region (MPER), which ensure coupling of hairpin closure to apposition and fusion of cell and viral membranes. The isolation of naturally produced short peptides and neutralizing IgG-s, that interact with FP and MPER, respectively, and block viral infection, suggests that these conserved regions might represent useful targets for clinical intervention. Furthermore, MTR-derived peptides have been shown to be membrane-active. Here, it is discussed the potential use of these molecules and how the analysis of their membrane activity in vitro could contribute to the development of HIV fusion inhibitors and effective immunogensThe authors wish to thank financial support obtained from Spanish MICINN (BIO2008-
00772) (JLN) and University of the Basque Country (GIU 06/42 and DIPE08/12) (NH
and JLN).Peer reviewe
A hybrid constraint programming and semidefinite programming approach for the stable set problem
This work presents a hybrid approach to solve the maximum stable set problem,
using constraint and semidefinite programming. The approach consists of two
steps: subproblem generation and subproblem solution. First we rank the
variable domain values, based on the solution of a semidefinite relaxation.
Using this ranking, we generate the most promising subproblems first, by
exploring a search tree using a limited discrepancy strategy. Then the
subproblems are being solved using a constraint programming solver. To
strengthen the semidefinite relaxation, we propose to infer additional
constraints from the discrepancy structure. Computational results show that the
semidefinite relaxation is very informative, since solutions of good quality
are found in the first subproblems, or optimality is proven immediately.Comment: 14 page
Relative Pitch Perception and the Detection of Deviant Tone Patterns.
Most people are able to recognise familiar tunes even when played in a different key. It is assumed that this depends on a general capacity for relative pitch perception; the ability to recognise the pattern of inter-note intervals that characterises the tune. However, when healthy adults are required to detect rare deviant melodic patterns in a sequence of randomly transposed standard patterns they perform close to chance. Musically experienced participants perform better than naïve participants, but even they find the task difficult, despite the fact that musical education includes training in interval recognition.To understand the source of this difficulty we designed an experiment to explore the relative influence of the size of within-pattern intervals and between-pattern transpositions on detecting deviant melodic patterns. We found that task difficulty increases when patterns contain large intervals (5-7 semitones) rather than small intervals (1-3 semitones). While task difficulty increases substantially when transpositions are introduced, the effect of transposition size (large vs small) is weaker. Increasing the range of permissible intervals to be used also makes the task more difficult. Furthermore, providing an initial exact repetition followed by subsequent transpositions does not improve performance. Although musical training correlates with task performance, we find no evidence that violations to musical intervals important in Western music (i.e. the perfect fifth or fourth) are more easily detected. In summary, relative pitch perception does not appear to be conducive to simple explanations based exclusively on invariant physical ratios
The detection of temporally defined objects does not require focused attention.
Perceptual grouping is crucial to distinguish objects from their background. Recent studies have shown that observers can detect an object that does not have any unique qualities other than unique temporal properties. A crucial question is whether focused attention is needed for this type of grouping. In two visual search experiments, we show that searching for an object defined by temporal grouping can occur in parallel. These findings suggest that focused attention is not needed for temporal grouping to occur. It is proposed that temporal grouping may occur because the neurons representing the changing object elements adopt firing frequencies that cause the visual system to bind these elements together without the need for focused attention. © 2008 The Experimental Psychology Society
Context and Crowding in Perceptual Learning on a Peripheral Contrast Discrimination Task: Context-Specificity in Contrast Learning
Perceptual learning is an improvement in sensitivity due to practice on a sensory task and is generally specific to the trained stimuli and/or tasks. The present study investigated the effect of stimulus configuration and crowding on perceptual learning in contrast discrimination in peripheral vision, and the effect of perceptual training on crowding in this task. 29 normally-sighted observers were trained to discriminate Gabor stimuli presented at 9° eccentricity with either identical or orthogonally oriented flankers with respect to the target (ISO and CROSS, respectively), or on an isolated target (CONTROL). Contrast discrimination thresholds were measured at various eccentricities and target-flanker separations before and after training in order to determine any learning transfer to untrained stimulus parameters. Perceptual learning was observed in all three training stimuli; however, greater improvement was obtained with training on ISO-oriented stimuli compared to CROSS-oriented and unflanked stimuli. This learning did not transfer to untrained stimulus configurations, eccentricities or target-flanker separations. A characteristic crowding effect was observed increasing with viewing eccentricity and decreasing with target-flanker separation before and after training in both configurations. The magnitude of crowding was reduced only at the trained eccentricity and target-flanker separation; therefore, learning for contrast discrimination and for crowding in the present study was configuration and location specific. Our findings suggest that stimulus configuration plays an important role in the magnitude of perceptual learning in contrast discrimination and suggest context-specificity in learning
Cracking the code of oscillatory activity
Neural oscillations are ubiquitous measurements of cognitive processes and dynamic routing and gating of information. The fundamental and so far unresolved problem for neuroscience remains to understand how oscillatory activity in the brain codes information for human cognition. In a biologically relevant cognitive task, we instructed six human observers to categorize facial expressions of emotion while we measured the observers' EEG. We combined state-of-the-art stimulus control with statistical information theory analysis to quantify how the three parameters of oscillations (i.e., power, phase, and frequency) code the visual information relevant for behavior in a cognitive task. We make three points: First, we demonstrate that phase codes considerably more information (2.4 times) relating to the cognitive task than power. Second, we show that the conjunction of power and phase coding reflects detailed visual features relevant for behavioral response-that is, features of facial expressions predicted by behavior. Third, we demonstrate, in analogy to communication technology, that oscillatory frequencies in the brain multiplex the coding of visual features, increasing coding capacity. Together, our findings about the fundamental coding properties of neural oscillations will redirect the research agenda in neuroscience by establishing the differential role of frequency, phase, and amplitude in coding behaviorally relevant information in the brai
From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex
Recent studies have pointed out the importance of transient synchronization
between widely distributed neural assemblies to understand conscious
perception. These neural assemblies form intricate networks of neurons and
synapses whose detailed map for mammals is still unknown and far from our
experimental capabilities. Only in a few cases, for example the C. elegans, we
know the complete mapping of the neuronal tissue or its mesoscopic level of
description provided by cortical areas. Here we study the process of transient
and global synchronization using a simple model of phase-coupled oscillators
assigned to cortical areas in the cerebral cat cortex. Our results highlight
the impact of the topological connectivity in the developing of
synchronization, revealing a transition in the synchronization organization
that goes from a modular decentralized coherence to a centralized synchronized
regime controlled by a few cortical areas forming a Rich-Club connectivity
pattern.Comment: 24 pages, 8 figures. Final version published in PLoS On
- …
