65 research outputs found

    Beyond homozygosity mapping: family-control analysis based on Hamming distance for prioritizing variants in exome sequencing

    Get PDF
    A major challenge in current exome sequencing in autosomal recessive (AR) families is the lack of an effective method to prioritize single-nucleotide variants (SNVs). AR families are generally too small for linkage analysis, and length of homozygous regions is unreliable for identification of causative variants. Various common filtering steps usually result in a list of candidate variants that cannot be narrowed down further or ranked. To prioritize shortlisted SNVs we consider each homozygous candidate variant together with a set of SNVs flanking it. We compare the resulting array of genotypes between an affected family member and a number of control individuals and argue that, in a family, differences between family member and controls should be larger for a pathogenic variant and SNVs flanking it than for a random variant. We assess differences between arrays in two individuals by the Hamming distance and develop a suitable test statistic, which is expected to be large for a causative variant and flanking SNVs. We prioritize candidate variants based on this statistic and applied our approach to six patients with known pathogenic variants and found these to be in the top 2 to 10 percentiles of ranks

    Mutations in PNPLA6 are linked to photoreceptor degeneration and various forms of childhood blindness

    Get PDF
    Blindness due to retinal degeneration affects millions of people worldwide, but many disease-causing mutations remain unknown. PNPLA6 encodes the patatin-like phospholipase domain containing protein 6, also known as neuropathy target esterase (NTE), which is the target of toxic organophosphates that induce human paralysis due to severe axonopathy of large neurons. Mutations in PNPLA6 also cause human spastic paraplegia characterized by motor neuron degeneration. Here we identify PNPLA6 mutations in childhood blindness in seven families with retinal degeneration, including Leber congenital amaurosis and Oliver McFarlane syndrome. PNPLA6 localizes mostly at the inner segment plasma membrane in photo-receptors and mutations in Drosophila PNPLA6 lead to photoreceptor cell death. We also report that lysophosphatidylcholine and lysophosphatidic acid levels are elevated in mutant Drosophila. These findings show a role for PNPLA6 in photoreceptor survival and identify phospholipid metabolism as a potential therapeutic target for some forms of blindness.Foundation Fighting Blindness CanadaCanadian Institutes of Health ResearchNIHCharles University institutional programmesBIOCEV-Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University, from the European Regional Development FundMinistry of Health of the Czech RepublicGraduate School of Life Sciences (University of Wuerzburg)Government of Canada through Genome CanadaOntario Genomics InstituteGenome QuebecGenome British ColumbiaMcLaughlin CentreCharles Univ Prague, Inst Inherited Metab Disorders, Fac Med 1, Prague 12000 2, Czech RepublicMcGill Univ, Dept Human Genet, Fac Med, Montreal, PQ H3A 0G1, CanadaGenome Quebec Innovat Ctr, Montreal, PQ H3A 0G1, CanadaClin Res Inst Montreal, Cellular Neurobiol Res Unit, Montreal, PQ H2W 1R7, CanadaMcGill Univ, Montreal, PQ H3A 0G4, CanadaMcGill Univ, Ctr Hlth, Montreal Childrens Hosp, McGill Ocular Genet Lab, Montreal, PQ H3H 1P3, CanadaMcGill Univ, Ctr Hlth, Montreal Childrens Hosp, Dept Paediat Surg, Montreal, PQ H3H 1P3, CanadaMcGill Univ, Ctr Hlth, Montreal Childrens Hosp, Dept Human Genet, Montreal, PQ H3H 1P3, CanadaMcGill Univ, Ctr Hlth, Montreal Childrens Hosp, Dept Ophthalmol, Montreal, PQ H3H 1P3, CanadaUniv Alberta, Royal Alexandra Hosp, Dept Ophthalmol & Visual Sci, Edmonton, AB T5H 3V9, CanadaCharles Univ Prague, Inst Biol & Med Genet, Fac Med 1, Prague 12000 2, Czech RepublicBaylor Coll Med, Dept Mol & Human Genet, Human Genome Sequencing Ctr, Houston, TX 77030 USAUniversidade Federal de São Paulo, Dept Neurol, Div Gen Neurol, BR-04021001 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Neurol, Ataxia Unit, BR-04021001 São Paulo, BrazilNewcastle Univ, Inst Med Genet, Newcastle Upon Tyne NE1 3BZ, Tyne & Wear, EnglandUniversidade Federal de São Paulo, Dept Ophthalmol, BR-04021001 São Paulo, BrazilSo Gen Hosp, Dept Clin Genet, Glasgow G51 4TF, Lanark, ScotlandCardiff Univ, Sch Med, Inst Med Genet, Cardiff CF14 4XN, S Glam, WalesHadassah Hebrew Univ Med Ctr, Dept Ophthalmol, IL-91120 Jerusalem, IsraelOregon Hlth & Sci Univ, Oregon Inst Occupat Hlth Sci, Portland, OR 97239 USAUniv Wurzburg, Lehrstuhl Neurobiol & Genet, D-97074 Wurzburg, GermanyUniv Montreal, Dept Med, Montreal, PQ H3T 1P1, CanadaMcGill Univ, Dept Anat & Cell Biol, Div Expt Med, Montreal, PQ H3A 2B2, CanadaUniversidade Federal de São Paulo, Dept Neurol, Div Gen Neurol, BR-04021001 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Neurol, Ataxia Unit, BR-04021001 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Ophthalmol, BR-04021001 São Paulo, BrazilNIH: EY022356-01NIH: EY018571-05NIH: NS047663-09Charles University institutional programmes: PRVOUK-P24/LF1/3Charles University institutional programmes: UNCE 204011Charles University institutional programmes: SVV2013/266504BIOCEV-Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University, from the European Regional Development Fund: CZ.1.05/1.1.00/02.0109Ministry of Health of the Czech Republic: NT13116-4/2012Ministry of Health of the Czech Republic: NT14015-3/2013Ontario Genomics Institute: OGI-049Web of Scienc

    Improvement of 2D-PAGE resolution of human, porcine and canine follicular fluid: comparison of two immunodepletion columns

    No full text
    Contents Follicular fluid provides the microenvironment within which somatic cells proliferate and differentiate, and the oocyte matures. It contains a number of soluble factors implicated in various stages of follicular development, most of them being functionally unknown. The presence of several high-abundance proteins, mainly originating from the blood circulation, is a major challenge of follicular fluid proteomic analysis, as these proteins can mask or decrease the visualization of follicle-specific proteins. In this study, we evaluated the efficiency of two immunodepletion columns (ProteomeLab (TM) IgY-HSA and MARS-6) on follicular fluids of human, porcine and canine prior to 2D-PAGE. Our results showed that both columns were suitable to remove some of the high-abundance proteins present in human and canine follicular fluid. In conclusion, we demonstrated that the immunodepletion strategy enables the detection of new protein spots, increases resolution and highly improves the intensity of low-abundance proteins by 2D-PAGE

    Proteomic analysis of mare follicular fluid during late follicle development

    Get PDF
     Background: Follicular fluid accumulates into the antrum of follicle from the early stage of follicle development. Studies on its components may contribute to a better understanding of the mechanisms underlying follicular development and oocyte quality. With this objective, we performed a proteomic analysis of mare follicular fluid. First, we hypothesized that proteins in follicular fluid may differ from those in the serum, and also may change during follicle development. Second, we used four different approaches of Immunodepletion and one enrichment method, in order to overcome the masking effect of high-abundance proteins present in the follicular fluid, and to identify those present in lower abundance. Finally, we compared our results with previous studies performed in mono-ovulant (human) and poly-ovulant (porcine and canine) species in an attempt to identify common and/or species-specific proteins. Methods: Follicular fluid samples were collected from ovaries at three different stages of follicle development (early dominant, late dominant and preovulatory). Blood samples were also collected at each time. The proteomic analysis was carried out on crude, depleted and enriched follicular fluid by 2D-PAGE, 1D-PAGE and mass spectrometry. Results: Total of 459 protein spots were visualized by 2D-PAGE of crude mare follicular fluid, with no difference among the three physiological stages. Thirty proteins were observed as differentially expressed between serum and follicular fluid. Enrichment method was found to be the most powerful method for detection and identification of low-abundance proteins from follicular fluid. Actually, we were able to identify 18 proteins in the crude follicular fluid, and as many as 113 in the enriched follicular fluid. Inhibins and a few other proteins involved in reproduction could only be identified after enrichment of follicular fluid, demonstrating the power of the method used. The comparison of proteins found in mare follicular fluid with proteins previously identified in human, porcine and canine follicular fluids, led to the identification of 12 common proteins and of several species-specific proteins. Conclusions: This study provides the first description of mare follicular fluid proteome during the late follicle development stages. We identified several proteins from crude, depleted and enriched follicular fluid. Our results demonstrate that the enrichment method, combined with 2D-PAGE and mass spectrometry, can be successfully used to visualize and further identify the low-abundance proteins in the follicular fluid

    Transcriptome profiling of granulosa and theca cells during dominant follicle development in the horse

    No full text
    Several aspects of equine ovarian physiology are unique among domestic species. Moreover, follicular growth patterns are very similar between horses and humans. This study aimed to characterize, for the first time, global gene expression profiles associated with growth and pre-ovulatory maturation of equine dominant follicles. Granulosa and theca interna cells (GCs, TCs) were harvested from follicles (n = 5) at different stages of an ovulatory wave in mares corresponding to early dominance (ED; diameter ≥22 mm), late dominance (LD; ≥33 mm) and pre-ovulatory stage (PO; 34h after administration of crude equine gonadotropins at LD stage), and separately analyzed on a horse gene expression microarray, followed by validation using qPCR and immunoblotting/immunohistochemistry. Numbers of differentially expressed transcripts (DETs; ≥2-fold; P <0.05) during the ED-LD and LD-PO transitions were 546 and 2419 in GCs, and 5 and 582 in TCs. The most prominent change in GCs was the down-regulation of transcripts associated with cell division during both ED-LD and LD-PO. In addition, DET sets during LD-PO in GCs were enriched for genes involved in cell communication/adhesion, anti-oxidation/detoxification, immunity/inflammation and cholesterol biosynthesis. In contrast, the largest change in TCs during the LD-PO transition was an up-regulation of genes involved in immune activation, with other DET sets mapping to GPCR/cAMP signaling, lipid/aminoacid metabolism, and cell proliferation/survival and differentiation. In conclusion, distinct expression profiles were identified between growing and pre-ovulatory follicles and, particularly, between GCs and TCs within each stage. Several DETs were identified that have not been associated with follicle development in other species
    corecore