359 research outputs found

    The Brown Dwarf Kinematics Project I. Proper motions and tangential velocities for a large sample of late-type M, L, and T dwarfs

    Get PDF
    We report proper-motion measurements for 427 late-type M, L, and T dwarfs, 332 of which have been measured for the first time. Combining these new proper motions with previously published measurements yields a sample of 841 M7-T8 dwarfs. We combined parallax measurements or calculated spectrophotometric distances, and computed tangential velocities for the entire sample. We find that kinematics for the full and volume-limited 20 pc samples are consistent with those expected for the Galactic thin disk, with no significant differences between late-type M, L, and T dwarfs. Applying an age-velocity relation we conclude that the average kinematic age of the 20 pc sample of ultracool dwarfs is older than recent kinematic estimates and more consistent with age results calculated with population synthesis models. There is a statistically distinct population of high tangential velocity sources (V tan > 100 km s^–1) whose kinematics suggest an even older population of ultracool dwarfs belonging to either the Galactic thick disk or halo. We isolate subsets of the entire sample, including low surface gravity dwarfs, unusually blue L dwarfs, and photometric outliers in J – Ks color and investigate their kinematics. We find that the spectroscopically distinct class of unusually blue L dwarfs has kinematics clearly consistent with old age, implying that high surface gravity and/or low metallicity may be relevant to their spectral properties. The low surface gravity dwarfs are kinematically younger than the overall population, and the kinematics of the red and blue ultracool dwarfs suggest ages that are younger and older than the full sample, respectively. We also present a reduced proper-motion diagram at 2MASS (Two Micron All Sky Survey) Ks for the entire population and find that a limit of HKs > 18 excludes M dwarfs from the L and T dwarf population regardless of near-infrared color, potentially enabling the identification of the coldest brown dwarfs in the absence of color information

    The Brown Dwarf Kinematics Project (BDKP). II. Details on Nine Wide Common Proper Motion Very Low-Mass Companions to Nearby Stars

    Get PDF
    We report on nine wide common proper motion systems containing late-type M, L, or T companions. We confirm six previously reported companions, and identify three new systems. The ages of these systems are determined using diagnostics for both stellar primaries and low--mass secondaries and masses for the secondaries are inferred using evolutionary models. Of our three new discoveries, the M3+T6.5 pair G 204-39 and SDSS J1758+4633 has an age constrained to 0.5-1.5 Gyr making the secondary a potentially useful brown dwarf benchmark. The G5+L4 pair G 200-28 and SDSS J1416+5006 has a projected separation of ~25,000 AU making it one of the widest and lowest binding energy systems known to date. The system containing NLTT 2274 and SDSS J0041+1341 is an older M4+L0 (>4.5 Gyr) pair which shows Halpha activity in the secondary but not the primary making it a useful tracer of age/mass/activity trends. We find a resolved binary frequency for widely-separated (> 100 AU) low--mass companions (i.e. at least a triple system) which is at least twice the frequency found for the field ultracool dwarf population. The ratio of triples to binaries and quadruples to binaries is also high for this sample: 3:5 and 1:4, respectively, compared to 8-parsec sample values of 1:4 and 1:26. The additional components in these wide companion systems indicates a formation mechanism that requires a third or fourth component to maintain gravitational stability or facilitate the exchange of angular momentum. The binding energies for the nine multiples discussed in this text are among the lowest known for wide low-mass systems, suggesting that weakly bound, low--to--intermediate mass (0.2M_sun < M_tot <1.0M_sun) multiples can form and survive to exist in the field (1-8 Gyr).Comment: 62 pages, 12 figures, 11 Tables, AJ accepted for publicatio

    2MASS J06164006-6407194: The First Outer Halo L Subdwarf

    Full text link
    We present the serendipitous discovery of an L subdwarf, 2MASS J06164006-6407194, in a search of the Two Micron All Sky Survey for T dwarfs. Its spectrum exhibits features indicative of both a cool and metal poor atmosphere including a heavily pressured-broadened K I resonant doublet, Cs I and Rb I lines, molecular bands of CaH, TiO, CrH, FeH, and H2O, and enhanced collision induced absorption of H2. We assign 2MASS 0616-6407 a spectral type of sdL5 based on a comparison of its red optical spectrum to that of near solar-metallicity L dwarfs. Its high proper motion (mu =1.405+-0.008 arcsec yr-1), large radial velocity (Vrad = 454+-15 km s-1), estimated uvw velocities (94, -573, 125) km s-1 and Galactic orbit with an apogalacticon at ~29 kpc are indicative of membership in the outer halo making 2MASS 0616-6407 the first ultracool member of this population.Comment: Accepted for publication in Ap

    Deep search for companions to probable young brown dwarfs

    Get PDF
    We have obtained high contrast images of four nearby, faint, and very low mass objects 2MASSJ04351455-1414468, SDSSJ044337.61+000205.1, 2MASSJ06085283-2753583 and 2MASSJ06524851-5741376 (here after 2MASS0435-14, SDSS0443+00, 2MASS0608-27 and 2MASS0652-57), identified in the field as probable isolated young brown dwarfs. Our goal was to search for binary companions down to the planetary mass regime. We used the NAOS-CONICA adaptive optics instrument (NACO) and its unique capability to sense the wavefront in the near-infrared to acquire sharp images of the four systems in Ks, with a field of view of 28"*28". Additional J and L' imaging and follow-up observations at a second epoch were obtained for 2MASS0652-57. With a typical contrast DKs= 4.0-7.0 mag, our observations are sensitive down to the planetary mass regime considering a minimum age of 10 to 120 Myr for these systems. No additional point sources are detected in the environment of 2MASS0435-14, SDSS0443+00 and 2MASS0608-27 between 0.1-12" (i.e about 2 to 250 AU at 20 pc). 2MASS0652-57 is resolved as a \sim230 mas binary. Follow-up observations reject a background contaminate, resolve the orbital motion of the pair, and confirm with high confidence that the system is physically bound. The J, Ks and L' photometry suggest a q\sim0.7-0.8 mass ratio binary with a probable semi-major axis of 5-6 AU. Among the four systems, 2MASS0652-57 is probably the less constrained in terms of age determination. Further analysis would be necessary to confirm its youth. It would then be interesting to determine its orbital and physical properties to derive the system's dynamical mass and to test evolutionary model predictions.Comment: Research note, 5 pages, 2 tables and 3 figures, accepted to A&
    corecore