68 research outputs found
Franco-American Collection Institutional Records Exhibit Flyer
In March of 2020, the Franco-American Collection planned to open an exhibit called Notre Pain Quotidien, Our Daily Bread: Franco-American Entrepreneurs Sustaining Community. Due to the COVID-19 shutdowns, that exhibit has been postponed until we can open safely to the public again.https://digitalcommons.usm.maine.edu/fac-covid-19-experiences/1005/thumbnail.jp
Franco-American Collection Institutional Records Exhibit Postcard
In March of 2020, the Franco-American Collection planned to open an exhibit called Notre Pain Quotidien, Our Daily Bread: Franco-American Entrepreneurs Sustaining Community. Due to the COVID-19 shutdowns, that exhibit has been postponed until we can open safely to the public again.https://digitalcommons.usm.maine.edu/fac-covid-19-experiences/1006/thumbnail.jp
Franco-American Collection Institutional Records Exhibit Brochure
In March of 2020, the Franco-American Collection planned to open an exhibit called Notre Pain Quotidien, Our Daily Bread: Franco-American Entrepreneurs Sustaining Community. Due to the COVID-19 shutdowns, that exhibit has been postponed until we can open safely to the public again.https://digitalcommons.usm.maine.edu/fac-covid-19-experiences/1007/thumbnail.jp
Le Forum, Vol. 44 #2
https://digitalcommons.library.umaine.edu/francoamericain_forum/1104/thumbnail.jp
Astrometric accelerations as dynamical beacons : discovery and characterization of HIP 21152 B, the First T-dwarf companion in the Hyades * * Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
Benchmark brown dwarf companions with well-determined ages and model-independent masses are powerful tools to test substellar evolutionary models and probe the formation of giant planets and brown dwarfs. Here, we report the independent discovery of HIP 21152 B, the first imaged brown dwarf companion in the Hyades, and conduct a comprehensive orbital and atmospheric characterization of the system. HIP 21152 was targeted in an ongoing high-contrast imaging campaign of stars exhibiting proper-motion changes between Hipparcos and Gaia, and was also recently identified by Bonavita et al. (2022) and Kuzuhara et al. (2022). Our Keck/NIRC2 and SCExAO/CHARIS imaging of HIP 21152 revealed a comoving companion at a separation of 0.″37 (16 au). We perform a joint orbit fit of all available relative astrometry and radial velocities together with the Hipparcos-Gaia proper motions, yielding a dynamical mass of 24−4+6MJup , which is 1–2σ lower than evolutionary model predictions. Hybrid grids that include the evolution of cloud properties best reproduce the dynamical mass. We also identify a comoving wide-separation (1837″ or 7.9 × 104 au) early-L dwarf with an inferred mass near the hydrogen-burning limit. Finally, we analyze the spectra and photometry of HIP 21152 B using the Saumon & Marley (2008) atmospheric models and a suite of retrievals. The best-fit grid-based models have f sed = 2, indicating the presence of clouds, T eff = 1400 K, and logg=4.5dex . These results are consistent with the object’s spectral type of T0 ± 1. As the first benchmark brown dwarf companion in the Hyades, HIP 21152 B joins the small but growing number of substellar companions with well-determined ages and dynamical masses
The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems V: Do Self-Consistent Atmospheric Models Represent JWST Spectra? A Showcase With VHS 1256 b
The unprecedented medium-resolution (R~1500-3500) near- and mid-infrared
(1-18um) spectrum provided by JWST for the young (140+/-20Myr) low-mass
(12-20MJup) L-T transition (L7) companion VHS1256b gives access to a catalogue
of molecular absorptions. In this study, we present a comprehensive analysis of
this dataset utilizing a forward modelling approach, applying our Bayesian
framework, ForMoSA. We explore five distinct atmospheric models to assess their
performance in estimating key atmospheric parameters: Teff, log(g), [M/H], C/O,
gamma, fsed, and R. Our findings reveal that each parameter's estimate is
significantly influenced by factors such as the wavelength range considered and
the model chosen for the fit. This is attributed to systematic errors in the
models and their challenges in accurately replicating the complex atmospheric
structure of VHS1256b, notably the complexity of its clouds and dust
distribution. To propagate the impact of these systematic uncertainties on our
atmospheric property estimates, we introduce innovative fitting methodologies
based on independent fits performed on different spectral windows. We finally
derived a Teff consistent with the spectral type of the target, considering its
young age, which is confirmed by our estimate of log(g). Despite the
exceptional data quality, attaining robust estimates for chemical abundances
[M/H] and C/O, often employed as indicators of formation history, remains
challenging. Nevertheless, the pioneering case of JWST's data for VHS1256b has
paved the way for future acquisitions of substellar spectra that will be
systematically analyzed to directly compare the properties of these objects and
correct the systematics in the models.Comment: 32 pages, 16 figures, 6 tables, 2 appendice
The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems IV: NIRISS Aperture Masking Interferometry Performance and Lessons Learned
We present a performance analysis for the aperture masking interferometry
(AMI) mode on board the James Webb Space Telescope Near Infrared Imager and
Slitless Spectrograph (JWST/NIRISS). Thanks to self-calibrating observables,
AMI accesses inner working angles down to and even within the classical
diffraction limit. The scientific potential of this mode has recently been
demonstrated by the Early Release Science (ERS) 1386 program with a deep search
for close-in companions in the HIP 65426 exoplanetary system. As part of ERS
1386, we use the same dataset to explore the random, static, and calibration
errors of NIRISS AMI observables. We compare the observed noise properties and
achievable contrast to theoretical predictions. We explore possible sources of
calibration errors, and show that differences in charge migration between the
observations of HIP 65426 and point-spread function calibration stars can
account for the achieved contrast curves. Lastly, we use self-calibration tests
to demonstrate that with adequate calibration, NIRISS AMI can reach contrast
levels of mag. These tests lead us to observation planning
recommendations and strongly motivate future studies aimed at producing
sophisticated calibration strategies taking these systematic effects into
account. This will unlock the unprecedented capabilities of JWST/NIRISS AMI,
with sensitivity to significantly colder, lower mass exoplanets than
ground-based setups at orbital separations inaccessible to JWST coronagraphy.Comment: 20 pages, 12 figures, submitted to AAS Journal
The \textit{JWST} Early Release Science Program for Direct Observations of Exoplanetary Systems III: Aperture Masking Interferometric Observations of the star HIP\,65426 at
We present aperture masking interferometry (AMI) observations of the star HIP
65426 at as a part of the \textit{JWST} Direct Imaging Early
Release Science (ERS) program obtained using the Near Infrared Imager and
Slitless Spectrograph (NIRISS) instrument. This mode provides access to very
small inner working angles (even separations slightly below the Michelson limit
of for an interferometer), which are inaccessible with the
classical inner working angles of the \textit{JWST} coronagraphs. When combined
with \textit{JWST}'s unprecedented infrared sensitivity, this mode has the
potential to probe a new portion of parameter space across a wide array of
astronomical observations. Using this mode, we are able to achieve a contrast
of \,mag relative to the host star at a separation
of {\sim}0.07\arcsec but detect no additional companions interior to the
known companion HIP\,65426\,b. Our observations thus rule out companions more
massive than 10{-}12\,\rm{M\textsubscript{Jup}} at separations
from HIP\,65426, a region out of reach of ground or
space-based coronagraphic imaging. These observations confirm that the AMI mode
on \textit{JWST} is sensitive to planetary mass companions orbiting at the
water frost line, even for more distant stars at 100\,pc. This result
will allow the planning and successful execution of future observations to
probe the inner regions of nearby stellar systems, opening essentially
unexplored parameter space.Comment: 15 pages, 9 figures, submitted to ApJ Letter
- …