177 research outputs found

    Confidence Propagation through CNNs for Guided Sparse Depth Regression

    Full text link
    Generally, convolutional neural networks (CNNs) process data on a regular grid, e.g. data generated by ordinary cameras. Designing CNNs for sparse and irregularly spaced input data is still an open research problem with numerous applications in autonomous driving, robotics, and surveillance. In this paper, we propose an algebraically-constrained normalized convolution layer for CNNs with highly sparse input that has a smaller number of network parameters compared to related work. We propose novel strategies for determining the confidence from the convolution operation and propagating it to consecutive layers. We also propose an objective function that simultaneously minimizes the data error while maximizing the output confidence. To integrate structural information, we also investigate fusion strategies to combine depth and RGB information in our normalized convolution network framework. In addition, we introduce the use of output confidence as an auxiliary information to improve the results. The capabilities of our normalized convolution network framework are demonstrated for the problem of scene depth completion. Comprehensive experiments are performed on the KITTI-Depth and the NYU-Depth-v2 datasets. The results clearly demonstrate that the proposed approach achieves superior performance while requiring only about 1-5% of the number of parameters compared to the state-of-the-art methods.Comment: 14 pages, 14 Figure

    Propagating Confidences through CNNs for Sparse Data Regression

    Full text link
    In most computer vision applications, convolutional neural networks (CNNs) operate on dense image data generated by ordinary cameras. Designing CNNs for sparse and irregularly spaced input data is still an open problem with numerous applications in autonomous driving, robotics, and surveillance. To tackle this challenging problem, we introduce an algebraically-constrained convolution layer for CNNs with sparse input and demonstrate its capabilities for the scene depth completion task. We propose novel strategies for determining the confidence from the convolution operation and propagating it to consecutive layers. Furthermore, we propose an objective function that simultaneously minimizes the data error while maximizing the output confidence. Comprehensive experiments are performed on the KITTI depth benchmark and the results clearly demonstrate that the proposed approach achieves superior performance while requiring three times fewer parameters than the state-of-the-art methods. Moreover, our approach produces a continuous pixel-wise confidence map enabling information fusion, state inference, and decision support.Comment: To appear in the British Machine Vision Conference (BMVC2018

    Deep Motion Features for Visual Tracking

    Full text link
    Robust visual tracking is a challenging computer vision problem, with many real-world applications. Most existing approaches employ hand-crafted appearance features, such as HOG or Color Names. Recently, deep RGB features extracted from convolutional neural networks have been successfully applied for tracking. Despite their success, these features only capture appearance information. On the other hand, motion cues provide discriminative and complementary information that can improve tracking performance. Contrary to visual tracking, deep motion features have been successfully applied for action recognition and video classification tasks. Typically, the motion features are learned by training a CNN on optical flow images extracted from large amounts of labeled videos. This paper presents an investigation of the impact of deep motion features in a tracking-by-detection framework. We further show that hand-crafted, deep RGB, and deep motion features contain complementary information. To the best of our knowledge, we are the first to propose fusing appearance information with deep motion features for visual tracking. Comprehensive experiments clearly suggest that our fusion approach with deep motion features outperforms standard methods relying on appearance information alone.Comment: ICPR 2016. Best paper award in the "Computer Vision and Robot Vision" trac

    Discriminative Scale Space Tracking

    Full text link
    Accurate scale estimation of a target is a challenging research problem in visual object tracking. Most state-of-the-art methods employ an exhaustive scale search to estimate the target size. The exhaustive search strategy is computationally expensive and struggles when encountered with large scale variations. This paper investigates the problem of accurate and robust scale estimation in a tracking-by-detection framework. We propose a novel scale adaptive tracking approach by learning separate discriminative correlation filters for translation and scale estimation. The explicit scale filter is learned online using the target appearance sampled at a set of different scales. Contrary to standard approaches, our method directly learns the appearance change induced by variations in the target scale. Additionally, we investigate strategies to reduce the computational cost of our approach. Extensive experiments are performed on the OTB and the VOT2014 datasets. Compared to the standard exhaustive scale search, our approach achieves a gain of 2.5% in average overlap precision on the OTB dataset. Additionally, our method is computationally efficient, operating at a 50% higher frame rate compared to the exhaustive scale search. Our method obtains the top rank in performance by outperforming 19 state-of-the-art trackers on OTB and 37 state-of-the-art trackers on VOT2014.Comment: To appear in TPAMI. This is the journal extension of the VOT2014-winning DSST tracking metho

    Language Guided Domain Generalized Medical Image Segmentation

    Full text link
    Single source domain generalization (SDG) holds promise for more reliable and consistent image segmentation across real-world clinical settings particularly in the medical domain, where data privacy and acquisition cost constraints often limit the availability of diverse datasets. Depending solely on visual features hampers the model's capacity to adapt effectively to various domains, primarily because of the presence of spurious correlations and domain-specific characteristics embedded within the image features. Incorporating text features alongside visual features is a potential solution to enhance the model's understanding of the data, as it goes beyond pixel-level information to provide valuable context. Textual cues describing the anatomical structures, their appearances, and variations across various imaging modalities can guide the model in domain adaptation, ultimately contributing to more robust and consistent segmentation. In this paper, we propose an approach that explicitly leverages textual information by incorporating a contrastive learning mechanism guided by the text encoder features to learn a more robust feature representation. We assess the effectiveness of our text-guided contrastive feature alignment technique in various scenarios, including cross-modality, cross-sequence, and cross-site settings for different segmentation tasks. Our approach achieves favorable performance against existing methods in literature. Our code and model weights are available at https://github.com/ShahinaKK/LG_SDG.git.Comment: Accepted at ISBI202

    Enhancing Novel Object Detection via Cooperative Foundational Models

    Full text link
    In this work, we address the challenging and emergent problem of novel object detection (NOD), focusing on the accurate detection of both known and novel object categories during inference. Traditional object detection algorithms are inherently closed-set, limiting their capability to handle NOD. We present a novel approach to transform existing closed-set detectors into open-set detectors. This transformation is achieved by leveraging the complementary strengths of pre-trained foundational models, specifically CLIP and SAM, through our cooperative mechanism. Furthermore, by integrating this mechanism with state-of-the-art open-set detectors such as GDINO, we establish new benchmarks in object detection performance. Our method achieves 17.42 mAP in novel object detection and 42.08 mAP for known objects on the challenging LVIS dataset. Adapting our approach to the COCO OVD split, we surpass the current state-of-the-art by a margin of 7.2 AP50 \text{AP}_{50} for novel classes. Our code is available at https://github.com/rohit901/cooperative-foundational-models .Comment: Code: https://github.com/rohit901/cooperative-foundational-model
    corecore