29 research outputs found

    Microarray and pathway analysis reveals decreased CDC25A and increased CDC42 associated with slow growth of BCL2 overexpressing immortalized breast cell line

    Get PDF
    Bcl-2 is an anti-apoptotic protein that is frequently overex-pressed in cancer cells but its role in carcinogenesis is not clear. We are interested in how Bcl-2 expression affects non-cancerous breast cells and its role in the cell cycle. We prepared an MCF10A breast epithelial cell line that stably overexpressed Bcl-2. We analyzed the cells by flow cytometry after synchronization, and used cDNA microarrays with quantitative reverse-transcription PCR (qRTPCR) to determine differences in gene expression. The microarray data was subjected to two pathway analysis tools, parametric analysis of gene set enrichment (PAGE) and ingenuity pathway analysis (IPA), and western analysis was carried out to determine the correlation between mRNA and protein levels. The MCF10A/Bcl-2 cells exhibited a slow-growth phenotype compared to control MCF10A/Neo cells that we attributed to a slowing of the G1-S cell cycle transition. A total of 363 genes were differentially expressed by at least two-fold, 307 upregulated and 56 downregulated. PAGE identified 22 significantly changed gene sets. The highest ranked network of genes identified by IPA contained 24 genes. Genes that were chosen for further analysis were confirmed by qRT-PCR, however, the western analysis did not always confirm differential expression of the proteins. Downregulation of the phosphatase CDC25A could solely be responsible for the slow growth pheno-type in MCF10A/Bcl-2 cells. Increased levels of GTPase Cdc42 could be adding to this effect. PAGE and IPA are valuable tools for microarray analysis, but protein expression results do not always follow mRNA expression results. Originally published Cell Cycle, Vol. 7, No. 19, Oct. 200

    Quaking promotes monocyte differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing and gene expression

    Get PDF
    A hallmark of inflammatory diseases is the excessive recruitment and influx of monocytes to sites of tissue damage and their ensuing differentiation into macrophages. Numerous stimuli are known to induce transcriptional changes associated with macrophage phenotype, but posttranscriptional control of human macrophage differentiation is less well understood. Here we show that expression levels of the RNA-binding protein Quaking (QKI) are low in monocytes and early human atherosclerotic lesions, but are abundant in macrophages of advanced plaques. Depletion of QKI protein impairs monocyte adhesion, migration, differentiation into macrophages and foam cell formation in vitro and in vivo. RNA-seq and microarray analysis of human monocyte and macrophage transcriptomes, including those of a unique QKI haploinsufficient patient, reveal striking changes in QKI-dependent messenger RNA levels and splicing of RNA transcripts. The biological importance of these transcripts and requirement for QKI during differentiation illustrates a central role for QKI in posttranscriptionally guiding macrophage identity and function.No sponso

    Early In Vitro Differentiation of Mouse Definitive Endoderm Is Not Correlated with Progressive Maturation of Nuclear DNA Methylation Patterns

    Get PDF
    The genome organization in pluripotent cells undergoing the first steps of differentiation is highly relevant to the reprogramming process in differentiation. Considering this fact, chromatin texture patterns that identify cells at the very early stage of lineage commitment could serve as valuable tools in the selection of optimal cell phenotypes for regenerative medicine applications. Here we report on the first-time use of high-resolution three-dimensional fluorescence imaging and comprehensive topological cell-by-cell analyses with a novel image-cytometrical approach towards the identification of in situ global nuclear DNA methylation patterns in early endodermal differentiation of mouse ES cells (up to day 6), and the correlations of these patterns with a set of putative markers for pluripotency and endodermal commitment, and the epithelial and mesenchymal character of cells. Utilizing this in vitro cell system as a model for assessing the relationship between differentiation and nuclear DNA methylation patterns, we found that differentiating cell populations display an increasing number of cells with a gain in DNA methylation load: first within their euchromatin, then extending into heterochromatic areas of the nucleus, which also results in significant changes of methylcytosine/global DNA codistribution patterns. We were also able to co-visualize and quantify the concomitant stochastic marker expression on a per-cell basis, for which we did not measure any correlation to methylcytosine loads or distribution patterns. We observe that the progression of global DNA methylation is not correlated with the standard transcription factors associated with endodermal development. Further studies are needed to determine whether the progression of global methylation could represent a useful signature of cellular differentiation. This concept of tracking epigenetic progression may prove useful in the selection of cell phenotypes for future regenerative medicine applications
    corecore