42 research outputs found

    Crystallographic Study Of The Phosphoethanolamine Transferase EptC required For Polymyxin Resistance And Motility In Campylobacter jejuni

    Get PDF
    The foodborne enteric pathogen Campylobacter jejuni decorates a variety of its cell-surface structures with phosphoethanolamine (pEtN). Modifying lipid A with pEtN promotes cationic antimicrobial peptide resistance, whereas post-translationally modifying the flagellar rod protein FlgG with pEtN promotes flagellar assembly and motility, which are processes that are important for intestinal colonization. EptC, the pEtN transferase required for all known pEtN cell-surface modifications in C. jejuni, is a predicted inner-membrane metalloenzyme with a five-helix N-terminal transmembrane domain followed by a soluble sulfatase-like catalytic domain in the periplasm. The atomic structure of the catalytic domain of EptC (cEptC) was crystallized and solved to a resolution of 2.40 angstrom. cEptC adopts the alpha/beta/alpha fold of the sulfatase protein family and harbors a zinc-binding site. A phosphorylated Thr266 residue was observed that was hypothesized to mimic a covalent pEtN-enzyme intermediate. The requirement for Thr266 as well as the nearby residues Asn308, Ser309, His358 and His440 was ascertained via in vivo activity assays on mutant strains. The results establish a basis for the design of pEtN transferase inhibitors.National Institutes of Health (grants AI064184, AI076322, GM106112Army Research Office (grantW911NF-12-1-0390)College of Natural SciencesOffice of the Executive Vice President and ProvostInstitute for Cellular and Molecular Biology at the University of Texas at AustinUS DOE DE-AC02-06CH11357National Institute of General Medical SciencesHoward Hughes Medical InstituteOffice of Science, Office of Basic Energy Sciences of the US Department of Energy DE-AC02-05CH11231Maria Person and the Proteomics Facility at the University of Texas at Austin ES007784 (CRED) and RP110782 (CPRIT)Molecular Bioscience

    Simple inhibitors of histone deacetylase activity that combine features of short-chain fatty acid and hydroxamic acid inhibitors

    Get PDF
    Butyric acid and trichostatin A (TSA) are anti-cancer compounds that cause the upregulation of genes involved in differentiation and cell cycle regulation by inhibiting histone deacetylase (HDAC) activity. In this study we have synthesized and evaluated compounds that combine the bioavailability of short-chain fatty acids, like butyric acid, with the bidentate binding ability of TSA. A series of analogs were made to examine the effects of chain length, simple aromatic cap groups, and substituted hydroxamates on the compounds\u27 ability to inhibit rat-liver HDAC using a fluorometric assay. In keeping with previous structure-activity relationships, the most effective inhibitors consisted of longer chains and hydroxamic acid groups. It was found that 5-phenylvaleric hydroxamic acid and 4-benzoylbutyric hydroxamic acid were the most potent inhibitors with IC50\u27s of 5 microM and 133 microM respectively

    Communication breakdown : dissecting the COM interfaces between the subunits of nonribosomal peptide synthetases

    Get PDF
    Nonribosomal peptides are a structurally diverse and bioactive class of natural products constructed by multidomain enzymatic assembly lines known as nonribosomal peptide synthetases (NRPSs). While the core catalytic domains and even entire protein subunits of NRPSs have been structurally elucidated, little biophysical work has been reported on the docking domains that promote interactions—and thus transfer of biosynthetic intermediates—between subunits. In the present study, we closely examine the COM domains that mediate COMmunication between donor epimerization (E) and acceptor condensation (C) domains found at the termini of NRPS subunits. Through a combination of X-ray crystallography, circular dichroism spectroscopy, solution- and solid-state NMR spectroscopy, and molecular dynamics (MD) simulations, we provide direct evidence for an intrinsically disordered donor COM region that folds into a dynamic helical motif upon binding to a suitable acceptor. Furthermore, our NMR titration and carbene footprinting experiments illuminate the residues involved at the COM interaction interface, and our MD simulations demonstrate folding consistent with experimental data. Although our results lend credence to the previously proposed helix-hand mode of interaction, they also underscore the importance of viewing COM interfaces as dynamic ensembles rather than single rigid structures and suggest that engineering experiments should account for the interactions which transiently guide folding in addition to those which stabilize the final complex. Through activity assays and affinity measurements, we further substantiate the role of the donor COM region in binding the acceptor C domain and implicate this short motif as readily transposable for noncognate domain crosstalk. Finally, our bioinformatics analyses show that COM domains are widespread in natural product pathways and function at interfaces beyond the canonical type described above, setting a high priority for thorough characterization of these docking domains. Our findings lay the groundwork for future attempts to rationally engineer NRPS domain–domain interactions with the ultimate goal of generating bioactive molecules

    Crystal Structure of Bacillus subtilis Cysteine Desulfurase SufS and Its Dynamic Interaction with Frataxin and Scaffold Protein SufU.

    No full text
    The biosynthesis of iron sulfur (Fe-S) clusters in Bacillus subtilis is mediated by a SUF-type gene cluster, consisting of the cysteine desulfurase SufS, the scaffold protein SufU, and the putative chaperone complex SufB/SufC/SufD. Here, we present the high-resolution crystal structure of the SufS homodimer in its product-bound state (i.e., in complex with pyrodoxal-5'-phosphate, alanine, Cys361-persulfide). By performing hydrogen/deuterium exchange (H/DX) experiments, we characterized the interaction of SufS with SufU and demonstrate that SufU induces an opening of the active site pocket of SufS. Recent data indicate that frataxin could be involved in Fe-S cluster biosynthesis by facilitating iron incorporation. H/DX experiments show that frataxin indeed interacts with the SufS/SufU complex at the active site. Our findings deepen the current understanding of Fe-S cluster biosynthesis, a complex yet essential process, in the model organism B. subtilis

    The ring residue proline 8 is crucial for the thermal stability of the lasso peptide caulosegnin II

    No full text
    Lasso peptides are fascinating natural products with a unique structural fold that can exhibit tremendous thermal stability.</p

    General rules of fragmentation evidencing lasso structures in CID and ETD

    No full text
    International audienceLasso peptides constitute a structurally unique class of ribosomally synthesized and post-translationally modified peptides (RiPPs) characterized by a mechanically interlocked structure in which the C-terminal tail of the peptide is threaded and trapped within an N-terminal macrolactam ring. Tandem mass spectrometry using collision induced dissociation (CID) and electron capture dissociation (ECD) have shown previously different fragmentation patterns for capistruin, microcin J25 and their corresponding branched-cyclic forms in which the C-terminal tail is unthreaded. In order to develop general rules that unambiguously discriminate the lasso and branched-cyclic topologies, this report presents experimental evidence for a set of twenty-one lasso peptides analyzed by CID and electron transfer dissociation (ETD). CID experiments on lasso peptides specifically yielded mechanically interlocked species with associated bi and yj fragments. For class II lasso peptides, these lasso-specific fragments were observed only for peptides in which the loop, located above the macrolactam ring, was strictly longer than four amino acid residues. For class I and III lasso peptides, part of the C-terminal tail remains covalently linked to the macrolactam ring by disulfide bonds; associated bi and yj fragments therefore do not clearly constitute a signature of the lasso topology. ETD experiments of lasso peptides showed a significant increase of hydrogen migration events in the loop region when compared to their branched-cyclic topoisomers, leading to the formation of specific ci˙/zâ€Čj fragments for all lasso peptides, regardless of their class and loop size. Our experiments enabled us to establish general rules for obtaining structural details from CID and ETD fragmentation patterns, obviating the need for structure determination by NMR or X-ray crystallography
    corecore